Matches in SemOpenAlex for { <https://semopenalex.org/work/W25425898> ?p ?o ?g. }
- W25425898 abstract "In deep submicron era, thermal hot spots and large temperature gradients significantly impact system reliability, performance, cost and leakage power. Dynamic thermal management techniques are designed to tackle the problems and control the chip temperature as well as power consumption. They refer to those techniques which enable the chip to autonomously modify the task execution and power dissipation characteristics so that lower-cost cooling solutions could be adopted while still guaranteeing safe temperature regulation. As long as the temperature is regulated, the system reliability can be improved, leakage power can be reduced and cooling system lifetime can be extended significantly. Multimedia applications are expected to form the largest portion of workload in general purpose PC and portable devices. The ever-increasing computation intensity of multimedia applications elevates the processor temperature and consequently impairs the reliability and performance of the system. In this thesis, we propose to perform dynamic thermal management using reinforcement learning algorithm for multimedia applications. The presented learning model does not need any prior knowledge of the workload information or the system thermal and power characteristics. It learns the temperature change and workload switching patterns by observing the temperature sensor and event counters on the processor, and finds the management policy that provides good performance-thermal tradeoff during the runtime. As the system complexity increases, it is more and more difficult to perform thermal management in a centralized manner because of state explosion and the overhead of monitoring the entire chip. In this thesis, we present a framework for distributed thermal management in many-core systems where balanced thermal profile can be achieved by proactive task migration among neighboring cores. The framework has a low cost agent residing in each core that observes the local workload and temperature and communicates with its nearest neighbor for task migration and exchange. By choosing only those migration requests that will result in balanced workload without generating thermal emergency, the presented framework maintains workload balance across the system and avoids unnecessary migration. Experimental results show that, our distributed management policy achieves almost the same performance as a global management policy when the tasks are initially randomly distributed. Compared with existing proactive task migration technique, our approach generates less hotspot, less migration overhead with negligible performance overhead. Temperature affects the leakage power and cooling power. In this thesis, we address the impact of task allocation on a processor’s leakage power and cooling fan power. Although the leakage power is determined by the average die temperature and the fan power is determined by the peak temperature, our analysis shows that the overall power can be minimized if a task allocation with minimum peak temperature is adopted together with an intelligent fan speed adjustment technique that finds the optimal tradeoff between fan power and leakage power. We further present a multi-agent distributed task migration technique that searches for the best task allocation during runtime. By choosing only those migration requests that will result chip maximum temperature reduction, the presented framework achieves large fan power savings as well as overall power reduction. Dynamic Thermal Management for Microprocessors" @default.
- W25425898 created "2016-06-24" @default.
- W25425898 creator A5049114317 @default.
- W25425898 date "2012-01-01" @default.
- W25425898 modified "2023-09-27" @default.
- W25425898 title "Dynamic Thermal Management for Microprocessors" @default.
- W25425898 cites W1560770548 @default.
- W25425898 cites W1565377632 @default.
- W25425898 cites W1576624296 @default.
- W25425898 cites W190397983 @default.
- W25425898 cites W1965324089 @default.
- W25425898 cites W1971547340 @default.
- W25425898 cites W1973789144 @default.
- W25425898 cites W1974420955 @default.
- W25425898 cites W2006645291 @default.
- W25425898 cites W2008093830 @default.
- W25425898 cites W2014853465 @default.
- W25425898 cites W2022740893 @default.
- W25425898 cites W2032671255 @default.
- W25425898 cites W2035720033 @default.
- W25425898 cites W2047876330 @default.
- W25425898 cites W2054302810 @default.
- W25425898 cites W2056312106 @default.
- W25425898 cites W2066339098 @default.
- W25425898 cites W2088056325 @default.
- W25425898 cites W2095942479 @default.
- W25425898 cites W2096554329 @default.
- W25425898 cites W2098663784 @default.
- W25425898 cites W2098911998 @default.
- W25425898 cites W2099237366 @default.
- W25425898 cites W2099314087 @default.
- W25425898 cites W2101020117 @default.
- W25425898 cites W2101476140 @default.
- W25425898 cites W2102566970 @default.
- W25425898 cites W2102727118 @default.
- W25425898 cites W2104461774 @default.
- W25425898 cites W2105533108 @default.
- W25425898 cites W2106119405 @default.
- W25425898 cites W2108147082 @default.
- W25425898 cites W2108155866 @default.
- W25425898 cites W2110860124 @default.
- W25425898 cites W2112996550 @default.
- W25425898 cites W2115219441 @default.
- W25425898 cites W2115946118 @default.
- W25425898 cites W2116550263 @default.
- W25425898 cites W2118359916 @default.
- W25425898 cites W2121863487 @default.
- W25425898 cites W2123184444 @default.
- W25425898 cites W2123853086 @default.
- W25425898 cites W2128709524 @default.
- W25425898 cites W2131928121 @default.
- W25425898 cites W2134568800 @default.
- W25425898 cites W2141923369 @default.
- W25425898 cites W2142386281 @default.
- W25425898 cites W2142660413 @default.
- W25425898 cites W2143667874 @default.
- W25425898 cites W2149935279 @default.
- W25425898 cites W2152165066 @default.
- W25425898 cites W2153981812 @default.
- W25425898 cites W2168024542 @default.
- W25425898 cites W2171762108 @default.
- W25425898 cites W2544965182 @default.
- W25425898 cites W87600089 @default.
- W25425898 cites W1550928833 @default.
- W25425898 hasPublicationYear "2012" @default.
- W25425898 type Work @default.
- W25425898 sameAs 25425898 @default.
- W25425898 citedByCount "0" @default.
- W25425898 crossrefType "journal-article" @default.
- W25425898 hasAuthorship W25425898A5049114317 @default.
- W25425898 hasConcept C111919701 @default.
- W25425898 hasConcept C11413529 @default.
- W25425898 hasConcept C114834414 @default.
- W25425898 hasConcept C121332964 @default.
- W25425898 hasConcept C127413603 @default.
- W25425898 hasConcept C133731056 @default.
- W25425898 hasConcept C139719470 @default.
- W25425898 hasConcept C149635348 @default.
- W25425898 hasConcept C162324750 @default.
- W25425898 hasConcept C163258240 @default.
- W25425898 hasConcept C165005293 @default.
- W25425898 hasConcept C200601418 @default.
- W25425898 hasConcept C2777042071 @default.
- W25425898 hasConcept C2778476105 @default.
- W25425898 hasConcept C2778774385 @default.
- W25425898 hasConcept C2779960059 @default.
- W25425898 hasConcept C41008148 @default.
- W25425898 hasConcept C43214815 @default.
- W25425898 hasConcept C45374587 @default.
- W25425898 hasConcept C536315585 @default.
- W25425898 hasConcept C62520636 @default.
- W25425898 hasConcept C76155785 @default.
- W25425898 hasConcept C78519656 @default.
- W25425898 hasConcept C79403827 @default.
- W25425898 hasConceptScore W25425898C111919701 @default.
- W25425898 hasConceptScore W25425898C11413529 @default.
- W25425898 hasConceptScore W25425898C114834414 @default.
- W25425898 hasConceptScore W25425898C121332964 @default.
- W25425898 hasConceptScore W25425898C127413603 @default.
- W25425898 hasConceptScore W25425898C133731056 @default.