Matches in SemOpenAlex for { <https://semopenalex.org/work/W2542888042> ?p ?o ?g. }
- W2542888042 endingPage "142" @default.
- W2542888042 startingPage "131" @default.
- W2542888042 abstract "Abstract Additive manufacturing (AM) techniques are ideal for producing customized products due to their high design flexibility. Despite the previous studies on specific additive manufactured customized products such as biomedical implants and prostheses, the simultaneous optimization of components, materials, AM processes, and dimensions remains a challenge. Multidisciplinary design optimization (MDO) is a research area of solving complex design problems involving multiple disciplines which usually interact with each other. The objective of this research is to formulate and solve an MDO problem in the development of additive manufactured products customized for various customers in different market segments. Three disciplines, i.e. the customer preference modeling, AM production costing, and structural mechanics are incorporated in the MDO problem. The optimal selections of components, materials, AM processes, and dimensional parameters are searched with the objectives to maximize the functionality utility, match individual customers' personal performance requirements, and minimize the total cost. A multi-objective genetic algorithm with the proposed chromosome encoding pattern is applied to solve the MDO problem. A case study of designing customized trans-tibial prostheses with additive manufactured components is presented to illustrate the proposed MDO method. Clusters of multi-dimensional Pareto-optimal design solutions are obtained from the MDO, showing trade-offs among the objectives. Appropriate design decision can be chosen from the clusters based on the manufacturer's market strategy. Highlights An optimization problem for additive manufactured customized products is solved. Three disciplines are incorporated in multidisciplinary design optimization (MDO). The selection of component, material, additive manufacturing process and dimensions are optimized. A multiobjective genetic algorithm is applied to solve the MDO problem. Pareto-optimal solutions with different utilities and costs are obtained." @default.
- W2542888042 created "2016-11-04" @default.
- W2542888042 creator A5042535267 @default.
- W2542888042 creator A5078141251 @default.
- W2542888042 creator A5082988770 @default.
- W2542888042 date "2016-10-26" @default.
- W2542888042 modified "2023-09-27" @default.
- W2542888042 title "Multidisciplinary design optimization to identify additive manufacturing resources in customized product development" @default.
- W2542888042 cites W1527517588 @default.
- W2542888042 cites W1552071801 @default.
- W2542888042 cites W1968947745 @default.
- W2542888042 cites W1990007965 @default.
- W2542888042 cites W1994350604 @default.
- W2542888042 cites W1997556497 @default.
- W2542888042 cites W2021012767 @default.
- W2542888042 cites W2023238041 @default.
- W2542888042 cites W2037138174 @default.
- W2542888042 cites W2038991891 @default.
- W2542888042 cites W2068956724 @default.
- W2542888042 cites W2072162438 @default.
- W2542888042 cites W2104359247 @default.
- W2542888042 cites W2121325888 @default.
- W2542888042 cites W2126105956 @default.
- W2542888042 cites W2130281033 @default.
- W2542888042 cites W2135438216 @default.
- W2542888042 cites W2151635674 @default.
- W2542888042 cites W2153070095 @default.
- W2542888042 cites W2164094775 @default.
- W2542888042 cites W2241810574 @default.
- W2542888042 cites W2289266064 @default.
- W2542888042 cites W2475009926 @default.
- W2542888042 cites W2524238214 @default.
- W2542888042 doi "https://doi.org/10.1016/j.jcde.2016.10.001" @default.
- W2542888042 hasPublicationYear "2016" @default.
- W2542888042 type Work @default.
- W2542888042 sameAs 2542888042 @default.
- W2542888042 citedByCount "21" @default.
- W2542888042 countsByYear W25428880422018 @default.
- W2542888042 countsByYear W25428880422019 @default.
- W2542888042 countsByYear W25428880422020 @default.
- W2542888042 countsByYear W25428880422021 @default.
- W2542888042 countsByYear W25428880422023 @default.
- W2542888042 crossrefType "journal-article" @default.
- W2542888042 hasAuthorship W2542888042A5042535267 @default.
- W2542888042 hasAuthorship W2542888042A5078141251 @default.
- W2542888042 hasAuthorship W2542888042A5082988770 @default.
- W2542888042 hasBestOaLocation W25428880421 @default.
- W2542888042 hasConcept C105795698 @default.
- W2542888042 hasConcept C111919701 @default.
- W2542888042 hasConcept C117671659 @default.
- W2542888042 hasConcept C120823896 @default.
- W2542888042 hasConcept C126255220 @default.
- W2542888042 hasConcept C127413603 @default.
- W2542888042 hasConcept C13736549 @default.
- W2542888042 hasConcept C137635306 @default.
- W2542888042 hasConcept C144024400 @default.
- W2542888042 hasConcept C22467394 @default.
- W2542888042 hasConcept C2524010 @default.
- W2542888042 hasConcept C2780598303 @default.
- W2542888042 hasConcept C28442783 @default.
- W2542888042 hasConcept C33923547 @default.
- W2542888042 hasConcept C36289849 @default.
- W2542888042 hasConcept C41008148 @default.
- W2542888042 hasConcept C68781425 @default.
- W2542888042 hasConcept C8880873 @default.
- W2542888042 hasConcept C90673727 @default.
- W2542888042 hasConcept C98045186 @default.
- W2542888042 hasConceptScore W2542888042C105795698 @default.
- W2542888042 hasConceptScore W2542888042C111919701 @default.
- W2542888042 hasConceptScore W2542888042C117671659 @default.
- W2542888042 hasConceptScore W2542888042C120823896 @default.
- W2542888042 hasConceptScore W2542888042C126255220 @default.
- W2542888042 hasConceptScore W2542888042C127413603 @default.
- W2542888042 hasConceptScore W2542888042C13736549 @default.
- W2542888042 hasConceptScore W2542888042C137635306 @default.
- W2542888042 hasConceptScore W2542888042C144024400 @default.
- W2542888042 hasConceptScore W2542888042C22467394 @default.
- W2542888042 hasConceptScore W2542888042C2524010 @default.
- W2542888042 hasConceptScore W2542888042C2780598303 @default.
- W2542888042 hasConceptScore W2542888042C28442783 @default.
- W2542888042 hasConceptScore W2542888042C33923547 @default.
- W2542888042 hasConceptScore W2542888042C36289849 @default.
- W2542888042 hasConceptScore W2542888042C41008148 @default.
- W2542888042 hasConceptScore W2542888042C68781425 @default.
- W2542888042 hasConceptScore W2542888042C8880873 @default.
- W2542888042 hasConceptScore W2542888042C90673727 @default.
- W2542888042 hasConceptScore W2542888042C98045186 @default.
- W2542888042 hasFunder F4320320751 @default.
- W2542888042 hasIssue "2" @default.
- W2542888042 hasLocation W25428880421 @default.
- W2542888042 hasLocation W25428880422 @default.
- W2542888042 hasOpenAccess W2542888042 @default.
- W2542888042 hasPrimaryLocation W25428880421 @default.
- W2542888042 hasRelatedWork W1977938613 @default.
- W2542888042 hasRelatedWork W2002677018 @default.
- W2542888042 hasRelatedWork W2012182585 @default.
- W2542888042 hasRelatedWork W2145877535 @default.
- W2542888042 hasRelatedWork W2159138863 @default.