Matches in SemOpenAlex for { <https://semopenalex.org/work/W2543055108> ?p ?o ?g. }
- W2543055108 endingPage "20160575" @default.
- W2543055108 startingPage "20160575" @default.
- W2543055108 abstract "Predicting the survival outcome of patients with glioblastoma multiforme (GBM) is of key importance to clinicians for selecting the optimal course of treatment. The goal of this study was to evaluate the usefulness of geometric shape features, extracted from MR images, as a potential non-invasive way to characterize GBM tumours and predict the overall survival times of patients with GBM.The data of 40 patients with GBM were obtained from the Cancer Genome Atlas and Cancer Imaging Archive. The T1 weighted post-contrast and fluid-attenuated inversion-recovery volumes of patients were co-registered and segmented into delineate regions corresponding to three GBM phenotypes: necrosis, active tumour and oedema/invasion. A set of two-dimensional shape features were then extracted slicewise from each phenotype region and combined over slices to describe the three-dimensional shape of these phenotypes. Thereafter, a Kruskal-Wallis test was employed to identify shape features with significantly different distributions across phenotypes. Moreover, a Kaplan-Meier analysis was performed to find features strongly associated with GBM survival. Finally, a multivariate analysis based on the random forest model was used for predicting the survival group of patients with GBM.Our analysis using the Kruskal-Wallis test showed that all but one shape feature had statistically significant differences across phenotypes, with p-value < 0.05, following Holm-Bonferroni correction, justifying the analysis of GBM tumour shapes on a per-phenotype basis. Furthermore, the survival analysis based on the Kaplan-Meier estimator identified three features derived from necrotic regions (i.e. Eccentricity, Extent and Solidity) that were significantly correlated with overall survival (corrected p-value < 0.05; hazard ratios between 1.68 and 1.87). In the multivariate analysis, features from necrotic regions gave the highest accuracy in predicting the survival group of patients, with a mean area under the receiver-operating characteristic curve (AUC) of 63.85%. Combining the features of all three phenotypes increased the mean AUC to 66.99%, suggesting that shape features from different phenotypes can be used in a synergic manner to predict GBM survival.Results show that shape features, in particular those extracted from necrotic regions, can be used effectively to characterize GBM tumours and predict the overall survival of patients with GBM. Advances in knowledge: Simple volumetric features have been largely used to characterize the different phenotypes of a GBM tumour (i.e. active tumour, oedema and necrosis). This study extends previous work by considering a wide range of shape features, extracted in different phenotypes, for the prediction of survival in patients with GBM." @default.
- W2543055108 created "2016-11-04" @default.
- W2543055108 creator A5017608284 @default.
- W2543055108 creator A5024700033 @default.
- W2543055108 creator A5036139436 @default.
- W2543055108 creator A5043254372 @default.
- W2543055108 date "2016-12-01" @default.
- W2543055108 modified "2023-09-30" @default.
- W2543055108 title "A quantitative study of shape descriptors from glioblastoma multiforme phenotypes for predicting survival outcome" @default.
- W2543055108 cites W1485518666 @default.
- W2543055108 cites W1487448580 @default.
- W2543055108 cites W1510833811 @default.
- W2543055108 cites W1548288608 @default.
- W2543055108 cites W1857532627 @default.
- W2543055108 cites W1977735548 @default.
- W2543055108 cites W1984166243 @default.
- W2543055108 cites W2008368065 @default.
- W2543055108 cites W2064214863 @default.
- W2543055108 cites W2085751750 @default.
- W2543055108 cites W2093758653 @default.
- W2543055108 cites W2096287682 @default.
- W2543055108 cites W2098812986 @default.
- W2543055108 cites W2099164578 @default.
- W2543055108 cites W2111389142 @default.
- W2543055108 cites W2118048970 @default.
- W2543055108 cites W2119000874 @default.
- W2543055108 cites W2120038224 @default.
- W2543055108 cites W2129921538 @default.
- W2543055108 cites W2136038762 @default.
- W2543055108 cites W2142485793 @default.
- W2543055108 cites W2151140401 @default.
- W2543055108 cites W2157270051 @default.
- W2543055108 cites W2157825442 @default.
- W2543055108 cites W2160509269 @default.
- W2543055108 cites W2161289668 @default.
- W2543055108 cites W2161514909 @default.
- W2543055108 cites W2163264715 @default.
- W2543055108 cites W2260784283 @default.
- W2543055108 cites W2264130490 @default.
- W2543055108 cites W2294184869 @default.
- W2543055108 cites W2533382638 @default.
- W2543055108 cites W2911964244 @default.
- W2543055108 cites W4248075514 @default.
- W2543055108 cites W4362216782 @default.
- W2543055108 doi "https://doi.org/10.1259/bjr.20160575" @default.
- W2543055108 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5604924" @default.
- W2543055108 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27781499" @default.
- W2543055108 hasPublicationYear "2016" @default.
- W2543055108 type Work @default.
- W2543055108 sameAs 2543055108 @default.
- W2543055108 citedByCount "39" @default.
- W2543055108 countsByYear W25430551082017 @default.
- W2543055108 countsByYear W25430551082018 @default.
- W2543055108 countsByYear W25430551082019 @default.
- W2543055108 countsByYear W25430551082020 @default.
- W2543055108 countsByYear W25430551082021 @default.
- W2543055108 countsByYear W25430551082022 @default.
- W2543055108 countsByYear W25430551082023 @default.
- W2543055108 crossrefType "journal-article" @default.
- W2543055108 hasAuthorship W2543055108A5017608284 @default.
- W2543055108 hasAuthorship W2543055108A5024700033 @default.
- W2543055108 hasAuthorship W2543055108A5036139436 @default.
- W2543055108 hasAuthorship W2543055108A5043254372 @default.
- W2543055108 hasBestOaLocation W25430551082 @default.
- W2543055108 hasConcept C104317684 @default.
- W2543055108 hasConcept C10515644 @default.
- W2543055108 hasConcept C105795698 @default.
- W2543055108 hasConcept C112604564 @default.
- W2543055108 hasConcept C126322002 @default.
- W2543055108 hasConcept C127716648 @default.
- W2543055108 hasConcept C127808970 @default.
- W2543055108 hasConcept C142724271 @default.
- W2543055108 hasConcept C143998085 @default.
- W2543055108 hasConcept C154945302 @default.
- W2543055108 hasConcept C169258074 @default.
- W2543055108 hasConcept C18903297 @default.
- W2543055108 hasConcept C2776194525 @default.
- W2543055108 hasConcept C2778227246 @default.
- W2543055108 hasConcept C33923547 @default.
- W2543055108 hasConcept C38180746 @default.
- W2543055108 hasConcept C41008148 @default.
- W2543055108 hasConcept C502942594 @default.
- W2543055108 hasConcept C50382708 @default.
- W2543055108 hasConcept C54355233 @default.
- W2543055108 hasConcept C71924100 @default.
- W2543055108 hasConcept C86803240 @default.
- W2543055108 hasConcept C97686452 @default.
- W2543055108 hasConceptScore W2543055108C104317684 @default.
- W2543055108 hasConceptScore W2543055108C10515644 @default.
- W2543055108 hasConceptScore W2543055108C105795698 @default.
- W2543055108 hasConceptScore W2543055108C112604564 @default.
- W2543055108 hasConceptScore W2543055108C126322002 @default.
- W2543055108 hasConceptScore W2543055108C127716648 @default.
- W2543055108 hasConceptScore W2543055108C127808970 @default.
- W2543055108 hasConceptScore W2543055108C142724271 @default.
- W2543055108 hasConceptScore W2543055108C143998085 @default.
- W2543055108 hasConceptScore W2543055108C154945302 @default.
- W2543055108 hasConceptScore W2543055108C169258074 @default.