Matches in SemOpenAlex for { <https://semopenalex.org/work/W2543337618> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2543337618 abstract "A variable-weight combination forecasting model using the least square method is built for solving, which is based on grey GM(1,1) model and RBF neural network. With actual consumption data, these three models can be used to predict the monthly social total electricity demand of a year for the particular area respectively. Through comparing the actual load value with the prediction results obtained by different models, predicted value, the actual value graphical trend and relative error of the prediction results obtained in the three models are analyzed. The feasibility of three load forecasting models, which are applicable to 'small samples' object is discussed. In MATLAB simulation, using actual load data to predict, it's borne out that the outcome of the variable weight combination forecasting is better than the gray prediction method and RBF neural network prediction method and it is suitable for the selected region of the actual situation in the text." @default.
- W2543337618 created "2016-11-04" @default.
- W2543337618 creator A5010044441 @default.
- W2543337618 creator A5012164805 @default.
- W2543337618 creator A5026626693 @default.
- W2543337618 date "2013-08-01" @default.
- W2543337618 modified "2023-10-17" @default.
- W2543337618 title "A variable-weight combination forecasting model based on GM(1,1) model and RBF neural network" @default.
- W2543337618 cites W2152397288 @default.
- W2543337618 cites W2167719609 @default.
- W2543337618 cites W2375461909 @default.
- W2543337618 cites W2376098014 @default.
- W2543337618 cites W2378400145 @default.
- W2543337618 doi "https://doi.org/10.1109/mic.2013.6758018" @default.
- W2543337618 hasPublicationYear "2013" @default.
- W2543337618 type Work @default.
- W2543337618 sameAs 2543337618 @default.
- W2543337618 citedByCount "0" @default.
- W2543337618 crossrefType "proceedings-article" @default.
- W2543337618 hasAuthorship W2543337618A5010044441 @default.
- W2543337618 hasAuthorship W2543337618A5012164805 @default.
- W2543337618 hasAuthorship W2543337618A5026626693 @default.
- W2543337618 hasConcept C105795698 @default.
- W2543337618 hasConcept C111919701 @default.
- W2543337618 hasConcept C11413529 @default.
- W2543337618 hasConcept C122383733 @default.
- W2543337618 hasConcept C124101348 @default.
- W2543337618 hasConcept C134306372 @default.
- W2543337618 hasConcept C139945424 @default.
- W2543337618 hasConcept C154945302 @default.
- W2543337618 hasConcept C182365436 @default.
- W2543337618 hasConcept C2780365114 @default.
- W2543337618 hasConcept C33923547 @default.
- W2543337618 hasConcept C41008148 @default.
- W2543337618 hasConcept C50644808 @default.
- W2543337618 hasConcept C67186912 @default.
- W2543337618 hasConcept C77088390 @default.
- W2543337618 hasConceptScore W2543337618C105795698 @default.
- W2543337618 hasConceptScore W2543337618C111919701 @default.
- W2543337618 hasConceptScore W2543337618C11413529 @default.
- W2543337618 hasConceptScore W2543337618C122383733 @default.
- W2543337618 hasConceptScore W2543337618C124101348 @default.
- W2543337618 hasConceptScore W2543337618C134306372 @default.
- W2543337618 hasConceptScore W2543337618C139945424 @default.
- W2543337618 hasConceptScore W2543337618C154945302 @default.
- W2543337618 hasConceptScore W2543337618C182365436 @default.
- W2543337618 hasConceptScore W2543337618C2780365114 @default.
- W2543337618 hasConceptScore W2543337618C33923547 @default.
- W2543337618 hasConceptScore W2543337618C41008148 @default.
- W2543337618 hasConceptScore W2543337618C50644808 @default.
- W2543337618 hasConceptScore W2543337618C67186912 @default.
- W2543337618 hasConceptScore W2543337618C77088390 @default.
- W2543337618 hasLocation W25433376181 @default.
- W2543337618 hasOpenAccess W2543337618 @default.
- W2543337618 hasPrimaryLocation W25433376181 @default.
- W2543337618 hasRelatedWork W1802802515 @default.
- W2543337618 hasRelatedWork W2019520713 @default.
- W2543337618 hasRelatedWork W2022147092 @default.
- W2543337618 hasRelatedWork W2040736047 @default.
- W2543337618 hasRelatedWork W2115040154 @default.
- W2543337618 hasRelatedWork W2129481162 @default.
- W2543337618 hasRelatedWork W2140979436 @default.
- W2543337618 hasRelatedWork W2353888404 @default.
- W2543337618 hasRelatedWork W2360543837 @default.
- W2543337618 hasRelatedWork W2368517802 @default.
- W2543337618 hasRelatedWork W2376926329 @default.
- W2543337618 hasRelatedWork W2382291945 @default.
- W2543337618 hasRelatedWork W2387890726 @default.
- W2543337618 hasRelatedWork W2392004656 @default.
- W2543337618 hasRelatedWork W2393041294 @default.
- W2543337618 hasRelatedWork W2393386120 @default.
- W2543337618 hasRelatedWork W2512630627 @default.
- W2543337618 hasRelatedWork W2534454756 @default.
- W2543337618 hasRelatedWork W2740251763 @default.
- W2543337618 hasRelatedWork W2826069337 @default.
- W2543337618 isParatext "false" @default.
- W2543337618 isRetracted "false" @default.
- W2543337618 magId "2543337618" @default.
- W2543337618 workType "article" @default.