Matches in SemOpenAlex for { <https://semopenalex.org/work/W2543618354> ?p ?o ?g. }
- W2543618354 endingPage "1588" @default.
- W2543618354 startingPage "1576" @default.
- W2543618354 abstract "Purpose A crucial decision in financial services is how to classify credit or loan applicants into good and bad applicants. The purpose of this paper is to propose a four-stage hybrid data mining approach to support the decision-making process. Design/methodology/approach The approach is inspired by the bagging ensemble learning method and proposes a new voting method, namely two-level majority voting in the last stage. First some training subsets are generated. Then some different base classifiers are tuned and afterward some ensemble methods are applied to strengthen tuned classifiers. Finally, two-level majority voting schemes help the approach to achieve more accuracy. Findings A comparison of results shows the proposed model outperforms powerful single classifiers such as multilayer perceptron (MLP), support vector machine, logistic regression (LR). In addition, it is more accurate than ensemble learning methods such as bagging-LR or rotation forest (RF)-MLP. The model outperforms single classifiers in terms of type I and II errors; it is close to some ensemble approaches such as bagging-LR and RF-MLP but fails to outperform them in terms of type I and II errors. Moreover, majority voting in the final stage provides more reliable results. Practical implications The study concludes the approach would be beneficial for banks, credit card companies and other credit provider organisations. Originality/value A novel four stages hybrid approach inspired by bagging ensemble method proposed. Moreover the two-level majority voting in two different schemes in the last stage provides more accuracy. An integrated evaluation criterion for classification errors provides an enhanced insight for error comparisons." @default.
- W2543618354 created "2016-11-04" @default.
- W2543618354 creator A5019433551 @default.
- W2543618354 creator A5050232057 @default.
- W2543618354 creator A5087153469 @default.
- W2543618354 date "2016-11-07" @default.
- W2543618354 modified "2023-09-25" @default.
- W2543618354 title "Customer credit scoring using a hybrid data mining approach" @default.
- W2543618354 cites W1535957588 @default.
- W2543618354 cites W1963607983 @default.
- W2543618354 cites W1968023063 @default.
- W2543618354 cites W1973704036 @default.
- W2543618354 cites W1978167252 @default.
- W2543618354 cites W1988790447 @default.
- W2543618354 cites W1990696070 @default.
- W2543618354 cites W1995254696 @default.
- W2543618354 cites W1995705912 @default.
- W2543618354 cites W2000656248 @default.
- W2543618354 cites W2004076523 @default.
- W2543618354 cites W2048289813 @default.
- W2543618354 cites W2056221673 @default.
- W2543618354 cites W2060462435 @default.
- W2543618354 cites W2113242816 @default.
- W2543618354 cites W2113442785 @default.
- W2543618354 cites W2131816657 @default.
- W2543618354 cites W2137983211 @default.
- W2543618354 cites W2150757437 @default.
- W2543618354 cites W2165721426 @default.
- W2543618354 cites W2278519563 @default.
- W2543618354 cites W2336505047 @default.
- W2543618354 cites W4212883601 @default.
- W2543618354 cites W4239510810 @default.
- W2543618354 doi "https://doi.org/10.1108/k-09-2015-0228" @default.
- W2543618354 hasPublicationYear "2016" @default.
- W2543618354 type Work @default.
- W2543618354 sameAs 2543618354 @default.
- W2543618354 citedByCount "7" @default.
- W2543618354 countsByYear W25436183542018 @default.
- W2543618354 countsByYear W25436183542019 @default.
- W2543618354 countsByYear W25436183542020 @default.
- W2543618354 countsByYear W25436183542021 @default.
- W2543618354 crossrefType "journal-article" @default.
- W2543618354 hasAuthorship W2543618354A5019433551 @default.
- W2543618354 hasAuthorship W2543618354A5050232057 @default.
- W2543618354 hasAuthorship W2543618354A5087153469 @default.
- W2543618354 hasConcept C10138342 @default.
- W2543618354 hasConcept C106135958 @default.
- W2543618354 hasConcept C119857082 @default.
- W2543618354 hasConcept C119898033 @default.
- W2543618354 hasConcept C12267149 @default.
- W2543618354 hasConcept C124101348 @default.
- W2543618354 hasConcept C153668964 @default.
- W2543618354 hasConcept C154945302 @default.
- W2543618354 hasConcept C162324750 @default.
- W2543618354 hasConcept C169258074 @default.
- W2543618354 hasConcept C17744445 @default.
- W2543618354 hasConcept C179717631 @default.
- W2543618354 hasConcept C199539241 @default.
- W2543618354 hasConcept C2777764128 @default.
- W2543618354 hasConcept C41008148 @default.
- W2543618354 hasConcept C45942800 @default.
- W2543618354 hasConcept C50644808 @default.
- W2543618354 hasConcept C520049643 @default.
- W2543618354 hasConcept C60908668 @default.
- W2543618354 hasConcept C94625758 @default.
- W2543618354 hasConceptScore W2543618354C10138342 @default.
- W2543618354 hasConceptScore W2543618354C106135958 @default.
- W2543618354 hasConceptScore W2543618354C119857082 @default.
- W2543618354 hasConceptScore W2543618354C119898033 @default.
- W2543618354 hasConceptScore W2543618354C12267149 @default.
- W2543618354 hasConceptScore W2543618354C124101348 @default.
- W2543618354 hasConceptScore W2543618354C153668964 @default.
- W2543618354 hasConceptScore W2543618354C154945302 @default.
- W2543618354 hasConceptScore W2543618354C162324750 @default.
- W2543618354 hasConceptScore W2543618354C169258074 @default.
- W2543618354 hasConceptScore W2543618354C17744445 @default.
- W2543618354 hasConceptScore W2543618354C179717631 @default.
- W2543618354 hasConceptScore W2543618354C199539241 @default.
- W2543618354 hasConceptScore W2543618354C2777764128 @default.
- W2543618354 hasConceptScore W2543618354C41008148 @default.
- W2543618354 hasConceptScore W2543618354C45942800 @default.
- W2543618354 hasConceptScore W2543618354C50644808 @default.
- W2543618354 hasConceptScore W2543618354C520049643 @default.
- W2543618354 hasConceptScore W2543618354C60908668 @default.
- W2543618354 hasConceptScore W2543618354C94625758 @default.
- W2543618354 hasIssue "10" @default.
- W2543618354 hasLocation W25436183541 @default.
- W2543618354 hasOpenAccess W2543618354 @default.
- W2543618354 hasPrimaryLocation W25436183541 @default.
- W2543618354 hasRelatedWork W2969860943 @default.
- W2543618354 hasRelatedWork W2979979539 @default.
- W2543618354 hasRelatedWork W3107332377 @default.
- W2543618354 hasRelatedWork W3135728610 @default.
- W2543618354 hasRelatedWork W3168994312 @default.
- W2543618354 hasRelatedWork W4206256357 @default.
- W2543618354 hasRelatedWork W4249229055 @default.
- W2543618354 hasRelatedWork W4285741730 @default.
- W2543618354 hasRelatedWork W4312122658 @default.