Matches in SemOpenAlex for { <https://semopenalex.org/work/W2544204473> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2544204473 abstract "Neural network (NN) models have been widely used in the literature for short-term load forecasting. Their popularity is mainly due to their excellent learning and approximation capability. However, their forecasting performance significantly depends on several factors including initializing parameters, training algorithm, and NN structure. To minimize negative effects of these factors, this paper proposes a practically simple, yet effective and an efficient method to combine forecasts generated by NN models. The proposed method includes three main phases: (i) training NNs with different structures, (ii) selecting best NN models based on their forecasting performance for a validation set, and (iii) combination of forecasts for selected best NNs. Forecast combination is performed through calculating the mean of forecasts generated by best NN models. The performance of the proposed method is examined using real world data set. Comparative studies demonstrate that the accuracy of combined forecasts is significantly superior to those obtained from individual NN models." @default.
- W2544204473 created "2016-11-04" @default.
- W2544204473 creator A5059557438 @default.
- W2544204473 creator A5077789570 @default.
- W2544204473 creator A5077905182 @default.
- W2544204473 date "2012-10-01" @default.
- W2544204473 modified "2023-10-16" @default.
- W2544204473 title "Improving load forecasting accuracy through combination of best forecasts" @default.
- W2544204473 cites W1511632816 @default.
- W2544204473 cites W1534316855 @default.
- W2544204473 cites W1728580465 @default.
- W2544204473 cites W1965157047 @default.
- W2544204473 cites W1967690950 @default.
- W2544204473 cites W1970636934 @default.
- W2544204473 cites W1975455363 @default.
- W2544204473 cites W1984452465 @default.
- W2544204473 cites W1986528915 @default.
- W2544204473 cites W2021252908 @default.
- W2544204473 cites W2031754865 @default.
- W2544204473 cites W2037370667 @default.
- W2544204473 cites W2038705170 @default.
- W2544204473 cites W2090322886 @default.
- W2544204473 cites W2130794005 @default.
- W2544204473 cites W2145005786 @default.
- W2544204473 cites W2146588145 @default.
- W2544204473 cites W2151767444 @default.
- W2544204473 cites W2155816288 @default.
- W2544204473 cites W2159118434 @default.
- W2544204473 cites W2160664614 @default.
- W2544204473 cites W2167999005 @default.
- W2544204473 cites W2180251153 @default.
- W2544204473 cites W2479418998 @default.
- W2544204473 cites W3141239309 @default.
- W2544204473 cites W63919978 @default.
- W2544204473 doi "https://doi.org/10.1109/powercon.2012.6401332" @default.
- W2544204473 hasPublicationYear "2012" @default.
- W2544204473 type Work @default.
- W2544204473 sameAs 2544204473 @default.
- W2544204473 citedByCount "5" @default.
- W2544204473 countsByYear W25442044732013 @default.
- W2544204473 countsByYear W25442044732015 @default.
- W2544204473 countsByYear W25442044732018 @default.
- W2544204473 countsByYear W25442044732021 @default.
- W2544204473 crossrefType "proceedings-article" @default.
- W2544204473 hasAuthorship W2544204473A5059557438 @default.
- W2544204473 hasAuthorship W2544204473A5077789570 @default.
- W2544204473 hasAuthorship W2544204473A5077905182 @default.
- W2544204473 hasConcept C114466953 @default.
- W2544204473 hasConcept C119857082 @default.
- W2544204473 hasConcept C124101348 @default.
- W2544204473 hasConcept C154945302 @default.
- W2544204473 hasConcept C177264268 @default.
- W2544204473 hasConcept C199360897 @default.
- W2544204473 hasConcept C41008148 @default.
- W2544204473 hasConcept C50644808 @default.
- W2544204473 hasConceptScore W2544204473C114466953 @default.
- W2544204473 hasConceptScore W2544204473C119857082 @default.
- W2544204473 hasConceptScore W2544204473C124101348 @default.
- W2544204473 hasConceptScore W2544204473C154945302 @default.
- W2544204473 hasConceptScore W2544204473C177264268 @default.
- W2544204473 hasConceptScore W2544204473C199360897 @default.
- W2544204473 hasConceptScore W2544204473C41008148 @default.
- W2544204473 hasConceptScore W2544204473C50644808 @default.
- W2544204473 hasLocation W25442044731 @default.
- W2544204473 hasOpenAccess W2544204473 @default.
- W2544204473 hasPrimaryLocation W25442044731 @default.
- W2544204473 hasRelatedWork W2126518521 @default.
- W2544204473 hasRelatedWork W2368370270 @default.
- W2544204473 hasRelatedWork W2374442885 @default.
- W2544204473 hasRelatedWork W2374512474 @default.
- W2544204473 hasRelatedWork W2961085424 @default.
- W2544204473 hasRelatedWork W3046894786 @default.
- W2544204473 hasRelatedWork W3137695610 @default.
- W2544204473 hasRelatedWork W4286629047 @default.
- W2544204473 hasRelatedWork W1629725936 @default.
- W2544204473 hasRelatedWork W4224009465 @default.
- W2544204473 isParatext "false" @default.
- W2544204473 isRetracted "false" @default.
- W2544204473 magId "2544204473" @default.
- W2544204473 workType "article" @default.