Matches in SemOpenAlex for { <https://semopenalex.org/work/W2544253145> ?p ?o ?g. }
- W2544253145 endingPage "237" @default.
- W2544253145 startingPage "227" @default.
- W2544253145 abstract "Many monogenetic vents display systematic temporal–compositional variations over the course of eruption. Previous studies have proposed that these trends may reflect variable degrees of crustal assimilation, or melting and mixing of heterogeneous mantle source(s). Discrimination between these two endmember hypotheses is critical for understanding the plumbing systems of monogenetic volcanoes, which pose a significant volcanic hazard in many areas. In this study, we examine the Papoose Canyon (PC) monogenetic vent in the Big Pine Volcanic Field (BPVF), which had been well characterized for temporal–compositional variations in erupted basalts. We present new major and trace element and Sr–Nd–Pb-O isotopic data from the PC “crystal cargo” (phenocrysts and xenoliths). Comparison of “crystal cargo” and host basalt provides new constraints on the history of magma storage, fractionation, and crustal contamination that are obscured in the bulk basalts due to pre- and syn-eruptive magma mixing processes. The abundances of phenocrysts and ultramafic xenoliths in the PC sequence decrease up-section. Olivine and clinopyroxene phenocrysts span a wide range of Mg# (77–89). The majority of phenocrysts are more evolved than olivine or clinopyroxene in equilibrium with their host basalts (Mg#=68–71, equilibrium Fo≈85–89). In addition, the ultramafic xenoliths display cumulate textures. Olivine and clinopyroxene from ultramafic xenoliths have Mg# (73–87) similar to the phenocrysts, and lower than typical mantle peridotites. Sr–Nd–Pb isotope compositions of the xenoliths are similar to early PC basalts. Finally, many clinopyroxene phenocrysts and clinopyroxene in xenoliths have trace element abundances in equilibrium with melts that are more enriched than the erupted basalts. These features suggest that the phenocrysts and xenoliths derive from melt that is more fractionated and enriched than erupted PC basalts. Pressure constraints suggest phenocrysts and ultramafic xenoliths crystallized at ∼5–7 kbar, corresponding to mid-crust depths. Correlations between HFSE depletion and Sr–Nd–Pb isotopic compositions, high δ18O values in olivines, and radiogenic Os isotopic compositions in whole rocks also suggest incorporation of a crustally contaminated component. We propose that the phenocrysts and ultramafic xenoliths derive from melts that ponded and fractionated and assimilated continental crust, possibly in mid-crustal sills. These melts were drained and mixed with more primitive melts as the eruption began, and the temporal–compositional trends and decreasing crystal phase abundances reflect gradual deflation and exhaustion of these sills as the eruption progressed. The isotopic variations in the PC sequence span much of the compositional range observed in the BPVF. Evidence for variable crustal contamination of PC basalts suggests that much of the isotopic variation observed in the BPVF may also reflect crustal contamination rather than mantle source heterogeneity as previously proposed. In addition, evidence of pre-eruptive magma ponding and fractionation, if applicable to other monogenetic vents, may have significant implications for monitoring and hazard assessment of monogenetic volcano fields." @default.
- W2544253145 created "2016-11-04" @default.
- W2544253145 creator A5003334792 @default.
- W2544253145 creator A5032081267 @default.
- W2544253145 creator A5051693546 @default.
- W2544253145 date "2017-01-01" @default.
- W2544253145 modified "2023-09-23" @default.
- W2544253145 title "Origin of temporal compositional trends in monogenetic vent eruptions: Insights from the crystal cargo in the Papoose Canyon sequence, Big Pine Volcanic Field, CA" @default.
- W2544253145 cites W1530019909 @default.
- W2544253145 cites W1531796569 @default.
- W2544253145 cites W1662681932 @default.
- W2544253145 cites W1671054346 @default.
- W2544253145 cites W1969859799 @default.
- W2544253145 cites W1974068301 @default.
- W2544253145 cites W1979082610 @default.
- W2544253145 cites W1988806251 @default.
- W2544253145 cites W1997086514 @default.
- W2544253145 cites W1999578482 @default.
- W2544253145 cites W2002517228 @default.
- W2544253145 cites W2004856555 @default.
- W2544253145 cites W2005539087 @default.
- W2544253145 cites W2008151690 @default.
- W2544253145 cites W2014814915 @default.
- W2544253145 cites W2015577392 @default.
- W2544253145 cites W2019257948 @default.
- W2544253145 cites W2024326960 @default.
- W2544253145 cites W2024575502 @default.
- W2544253145 cites W2024979585 @default.
- W2544253145 cites W2034200666 @default.
- W2544253145 cites W2036153230 @default.
- W2544253145 cites W2040092205 @default.
- W2544253145 cites W2042692134 @default.
- W2544253145 cites W2053118559 @default.
- W2544253145 cites W2059197455 @default.
- W2544253145 cites W2063583381 @default.
- W2544253145 cites W2071891261 @default.
- W2544253145 cites W2076755830 @default.
- W2544253145 cites W2078840355 @default.
- W2544253145 cites W2079166174 @default.
- W2544253145 cites W2083924291 @default.
- W2544253145 cites W2088908478 @default.
- W2544253145 cites W2090717522 @default.
- W2544253145 cites W2090854845 @default.
- W2544253145 cites W2092299304 @default.
- W2544253145 cites W2093941277 @default.
- W2544253145 cites W2111269243 @default.
- W2544253145 cites W2115174258 @default.
- W2544253145 cites W2117020544 @default.
- W2544253145 cites W2117141845 @default.
- W2544253145 cites W2117726746 @default.
- W2544253145 cites W2118770802 @default.
- W2544253145 cites W2119091455 @default.
- W2544253145 cites W2119424315 @default.
- W2544253145 cites W2120660842 @default.
- W2544253145 cites W2130511591 @default.
- W2544253145 cites W2141645432 @default.
- W2544253145 cites W2147733307 @default.
- W2544253145 cites W2154052596 @default.
- W2544253145 cites W2155010297 @default.
- W2544253145 cites W2161825992 @default.
- W2544253145 cites W2163321125 @default.
- W2544253145 cites W2166632770 @default.
- W2544253145 cites W2167174476 @default.
- W2544253145 cites W2322013406 @default.
- W2544253145 doi "https://doi.org/10.1016/j.epsl.2016.10.013" @default.
- W2544253145 hasPublicationYear "2017" @default.
- W2544253145 type Work @default.
- W2544253145 sameAs 2544253145 @default.
- W2544253145 citedByCount "8" @default.
- W2544253145 countsByYear W25442531452018 @default.
- W2544253145 countsByYear W25442531452019 @default.
- W2544253145 countsByYear W25442531452020 @default.
- W2544253145 countsByYear W25442531452022 @default.
- W2544253145 crossrefType "journal-article" @default.
- W2544253145 hasAuthorship W2544253145A5003334792 @default.
- W2544253145 hasAuthorship W2544253145A5032081267 @default.
- W2544253145 hasAuthorship W2544253145A5051693546 @default.
- W2544253145 hasBestOaLocation W25442531451 @default.
- W2544253145 hasConcept C120806208 @default.
- W2544253145 hasConcept C127313418 @default.
- W2544253145 hasConcept C161509811 @default.
- W2544253145 hasConcept C167236342 @default.
- W2544253145 hasConcept C17409809 @default.
- W2544253145 hasConcept C182402614 @default.
- W2544253145 hasConcept C192241223 @default.
- W2544253145 hasConcept C195081551 @default.
- W2544253145 hasConcept C2780364934 @default.
- W2544253145 hasConcept C42796848 @default.
- W2544253145 hasConcept C67236022 @default.
- W2544253145 hasConceptScore W2544253145C120806208 @default.
- W2544253145 hasConceptScore W2544253145C127313418 @default.
- W2544253145 hasConceptScore W2544253145C161509811 @default.
- W2544253145 hasConceptScore W2544253145C167236342 @default.
- W2544253145 hasConceptScore W2544253145C17409809 @default.
- W2544253145 hasConceptScore W2544253145C182402614 @default.
- W2544253145 hasConceptScore W2544253145C192241223 @default.
- W2544253145 hasConceptScore W2544253145C195081551 @default.
- W2544253145 hasConceptScore W2544253145C2780364934 @default.