Matches in SemOpenAlex for { <https://semopenalex.org/work/W2544492030> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2544492030 endingPage "1262" @default.
- W2544492030 startingPage "1258" @default.
- W2544492030 abstract "No AccessEngineering NoteComputational Adaptive Optimal Control of Spacecraft Attitude Dynamics with Inertia-Matrix IdentificationPavan Nuthi and Kamesh SubbaraoPavan NuthiUniversity of Texas at Arlington, Arlington Texas 76019*Ph.D. Student, Department of Mechanical and Aerospace Engineering, Box 19023; .Search for more papers by this author and Kamesh SubbaraoUniversity of Texas at Arlington, Arlington Texas 76019†Associate Professor, Department of Mechanical and Aerospace Engineering, Box 19018; . Associate Fellow AIAA.Search for more papers by this authorPublished Online:26 Oct 2016https://doi.org/10.2514/1.G000706SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Vadali S. R. and Junkins J. L., “Optimal Open-Loop and Stable Feedback Control of Rigid Spacecraft Attitude Maneuvers,” Journal of the Astronautical Sciences, Vol. 32, No. 2, April–June 1984, pp. 105–122. Google Scholar[2] Singh G., Kabamba P. T. and McClamroch N. H., “Planar, Time-Optimal, Rest-to-Rest Slewing Maneuvers of Flexible Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 12, No. 1, 1989, pp. 71–81. doi:https://doi.org/10.2514/3.20370 JGCODS 0731-5090 LinkGoogle Scholar[3] Bilimoria K. D. and Wie B., “Time-Optimal Three-Axis Reorientation of a Rigid Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 3, 1993, pp. 446–452. doi:https://doi.org/10.2514/3.21030 JGCODS 0731-5090 LinkGoogle Scholar[4] Flores-Abad A., Ma O., Pham K. and Ulrich S., “A Review of Space Robotics Technologies for On-Orbit Servicing,” Progress in Aerospace Sciences, Vol. 68, July 2014, pp. 1–26. doi:https://doi.org/10.1016/j.paerosci.2014.03.002 PAESD6 0376-0421 CrossrefGoogle Scholar[5] Sanyal A., Fosbury A., Chaturvedi N. and Bernstein D. S., “Inertia-Free Spacecraft Attitude Trajectory Tracking with Internal-Model-Based Disturbance Rejection and Almost Global Stabilization,” 2009 American Control Conference, IEEE, Piscataway, NJ, 2009, pp. 4830–4835. doi:https://doi.org/10.1109/ACC.2009.5160039 Google Scholar[6] Ma O., Dang H. and Pham K., “On-Orbit Identification of Inertia Properties of Spacecraft Using a Robotic Arm,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1761–1771. doi:https://doi.org/10.2514/1.35188 LinkGoogle Scholar[7] Norman M. C., Peck M. A. and O'Shaughnessy D. J., “In-Orbit Estimation of Inertia and Momentum-Actuator Alignment Parameters,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1798–1814. doi:https://doi.org/10.2514/1.53692 LinkGoogle Scholar[8] Wilson E., Lages C. and Mah R., “On-Line Gyro-Based, Mass-Property Identification for Thruster-Controlled Spacecraft Using Recursive Least Squares,” 45th Midwest Symposium on Circuits and Systems, MWSCAS-2002, Vol. 2, Tulsa, OK, 2002, pp. 334–337. doi:https://doi.org/10.1109/MWSCAS.2002.1186866 Google Scholar[9] Ahmed J., Coppola V. T. and Bernstein D. S., “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 5, 1998, pp. 684–691. doi:https://doi.org/10.2514/2.4310 LinkGoogle Scholar[10] Ahmed J. and Bernstein D. S., “Globally Convergent Adaptive Control of Spacecraft Angular Velocity Without Inertia Modeling,” Proceedings of the American Control Conference, Vol. 3, San Diego, CA, 1999, pp. 1540–1544. doi:https://doi.org/10.1109/ACC.1999.786083 Google Scholar[11] Sanyal A. K., Chellappa M., Valk J. L., Ahmed J., Shen J. and Bernstein D. S., “Globally Convergent Adaptive Tracking of Spacecraft Angular Velocity with Inertia Identification and Adaptive Linearization,” Proceedings of the 42nd IEEE Conference on Decision and Control, Vol. 3, IEEE, Piscataway, NJ, 2003, pp. 2704–2709. doi:https://doi.org/10.1109/CDC.2003.1273032 Google Scholar[12] Chaturvedi N. A., Bernstein D. S., Ahmed J., Bacconi F. and McClamroch N. H., “Globally Convergent Adaptive Tracking of Angular Velocity and Inertia Identification for a 3-DOF Rigid Body,” IEEE Transactions on Control Systems Technology, Vol. 14, No. 5, 2006, pp. 841–853. doi:https://doi.org/10.1109/TCST.2006.876908 IETTE2 1063-6536 CrossrefGoogle Scholar[13] Nuthi P. K. and Subbarao K., “Aspects of Intuitive Control: Stabilize, Optimize, and Identify,” AIAA SciTech, AIAA Paper 2015-1989, Jan. 2015. doi:https://doi.org/10.2514/6.2015-1989 LinkGoogle Scholar[14] Jiang Y. and Jiang Z.-P., “Computational Adaptive Optimal Control for Continuous-Time Linear Systems with Completely Unknown Dynamics,” Automatica, Vol. 48, No. 10, 2012, pp. 2699–2704. doi:https://doi.org/10.1016/j.automatica.2012.06.096 ATCAA9 0005-1098 CrossrefGoogle Scholar[15] Kleinman D., “On an Iterative Technique for Riccati Equation Computations,” IEEE Transactions on Automatic Control, Vol. 13, No. 1, 1968, pp. 114–115. doi:https://doi.org/10.1109/TAC.1968.1098829 IETAA9 0018-9286 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited bySatellite attitude control using optimal adaptive and fuzzy controllersActa Astronautica, Vol. 204Constrained Filtering for On-Orbit Estimation of Spacecraft Mass PropertiesKyle J. DeMars and J. C. Helmuth15 October 2022Neural network-based reinforcement learning control for combined spacecraft attitude tracking maneuversNeurocomputing, Vol. 484Optimal Slewing Maneuvers For Inertia Tensor ObservabilityJohn C. Helmuth and Kyle J. DeMars29 December 2021Disturbance observer-based control with input MRCsPassivity-Based Pulse-Width-Modulated Spacecraft Attitude ControlXiaoyu Lang and Anton de Ruiter30 July 2021 | Journal of Guidance, Control, and Dynamics, Vol. 44, No. 11Model-Free Prescribed Performance Control for Spacecraft Attitude TrackingIEEE Transactions on Control Systems Technology, Vol. 29, No. 1Disturbance observer-based attitude stabilization for rigid spacecraft with input MRCsAdvances in Space Research, Vol. 66, No. 3Finite-Time Concurrent Learning Adaptive Control for Spacecraft with Inertia Parameter IdentificationQin Zhao and Guangren Duan27 November 2019 | Journal of Guidance, Control, and Dynamics, Vol. 43, No. 3Observability Study for Estimation of Rigid Body Attitude and Inertia TensorJohn C. Helmuth and Kyle J. DeMars5 January 2020Time-varying state-space model identification of an on-orbit rigid-flexible coupling spacecraft using an improved predictor-based recursive subspace algorithmActa Astronautica, Vol. 163Integrated identification and control for nanosatellites reclaiming failed satelliteActa Astronautica, Vol. 146Low-complexity prescribed performance control for spacecraft attitude stabilization and trackingAerospace Science and Technology, Vol. 74 What's Popular Volume 40, Number 5May 2017 CrossmarkInformationCopyright © 2016 by Kamesh Subbarao and Pavan Nuthi. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0731-5090 (print) or 1533-3884 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerospace SciencesAstrodynamicsAstronauticsAttitude ControlControl TheoryGuidance, Navigation, and Control SystemsOptimal Control TheoryOrbital ManeuversSpace OrbitSpacecraft Attitude ControlSpacecraft Guidance and Control KeywordsAlgebraic Riccati EquationSpacecraft AttitudeLinear Time Invariant SystemAttitude DynamicsRigid Body DynamicsGyroscopesIterative SolutionAttitude TrackingSpacecraft Health MonitoringSpacecraft ManeuversPDF Received27 June 2016Accepted14 August 2016Published online26 October 2016" @default.
- W2544492030 created "2016-11-04" @default.
- W2544492030 creator A5020987209 @default.
- W2544492030 creator A5057626643 @default.
- W2544492030 date "2017-05-01" @default.
- W2544492030 modified "2023-10-14" @default.
- W2544492030 title "Computational Adaptive Optimal Control of Spacecraft Attitude Dynamics with Inertia-Matrix Identification" @default.
- W2544492030 cites W1969981634 @default.
- W2544492030 cites W1983147565 @default.
- W2544492030 cites W2000742320 @default.
- W2544492030 cites W2030839289 @default.
- W2544492030 cites W2037025184 @default.
- W2544492030 cites W2090308161 @default.
- W2544492030 cites W2140535013 @default.
- W2544492030 cites W2141097890 @default.
- W2544492030 cites W2148439597 @default.
- W2544492030 cites W2325011477 @default.
- W2544492030 doi "https://doi.org/10.2514/1.g000706" @default.
- W2544492030 hasPublicationYear "2017" @default.
- W2544492030 type Work @default.
- W2544492030 sameAs 2544492030 @default.
- W2544492030 citedByCount "14" @default.
- W2544492030 countsByYear W25444920302018 @default.
- W2544492030 countsByYear W25444920302019 @default.
- W2544492030 countsByYear W25444920302020 @default.
- W2544492030 countsByYear W25444920302021 @default.
- W2544492030 countsByYear W25444920302022 @default.
- W2544492030 countsByYear W25444920302023 @default.
- W2544492030 crossrefType "journal-article" @default.
- W2544492030 hasAuthorship W2544492030A5020987209 @default.
- W2544492030 hasAuthorship W2544492030A5057626643 @default.
- W2544492030 hasConcept C110407247 @default.
- W2544492030 hasConcept C121332964 @default.
- W2544492030 hasConcept C127413603 @default.
- W2544492030 hasConcept C145912823 @default.
- W2544492030 hasConcept C146978453 @default.
- W2544492030 hasConcept C155710575 @default.
- W2544492030 hasConcept C167740415 @default.
- W2544492030 hasConcept C178802073 @default.
- W2544492030 hasConcept C24890656 @default.
- W2544492030 hasConcept C29829512 @default.
- W2544492030 hasConcept C41008148 @default.
- W2544492030 hasConcept C60808876 @default.
- W2544492030 hasConcept C74650414 @default.
- W2544492030 hasConceptScore W2544492030C110407247 @default.
- W2544492030 hasConceptScore W2544492030C121332964 @default.
- W2544492030 hasConceptScore W2544492030C127413603 @default.
- W2544492030 hasConceptScore W2544492030C145912823 @default.
- W2544492030 hasConceptScore W2544492030C146978453 @default.
- W2544492030 hasConceptScore W2544492030C155710575 @default.
- W2544492030 hasConceptScore W2544492030C167740415 @default.
- W2544492030 hasConceptScore W2544492030C178802073 @default.
- W2544492030 hasConceptScore W2544492030C24890656 @default.
- W2544492030 hasConceptScore W2544492030C29829512 @default.
- W2544492030 hasConceptScore W2544492030C41008148 @default.
- W2544492030 hasConceptScore W2544492030C60808876 @default.
- W2544492030 hasConceptScore W2544492030C74650414 @default.
- W2544492030 hasIssue "5" @default.
- W2544492030 hasLocation W25444920301 @default.
- W2544492030 hasOpenAccess W2544492030 @default.
- W2544492030 hasPrimaryLocation W25444920301 @default.
- W2544492030 hasRelatedWork W1998736187 @default.
- W2544492030 hasRelatedWork W2040613208 @default.
- W2544492030 hasRelatedWork W2348581385 @default.
- W2544492030 hasRelatedWork W2735605913 @default.
- W2544492030 hasRelatedWork W3182086065 @default.
- W2544492030 hasRelatedWork W4247303675 @default.
- W2544492030 hasRelatedWork W4256672232 @default.
- W2544492030 hasRelatedWork W4285816352 @default.
- W2544492030 hasRelatedWork W595615753 @default.
- W2544492030 hasRelatedWork W609390268 @default.
- W2544492030 hasVolume "40" @default.
- W2544492030 isParatext "false" @default.
- W2544492030 isRetracted "false" @default.
- W2544492030 magId "2544492030" @default.
- W2544492030 workType "article" @default.