Matches in SemOpenAlex for { <https://semopenalex.org/work/W2544692362> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2544692362 abstract "Recurrent neural networks (RNN) are powerful sequence learners. However, RNN suffers from the problem of vanishing gradient point. This fact makes learning sequential task more than 10 time steps harder for RNN. Recurrent network with LSTM cells as hidden layers (LSTM-RNN) is a deep learning recurrent network architecture designed to address the vanishing gradient problem by incorporating memory cells (LSTM cells) in the hidden layer(s). This advantage puts it at one of the best sequence learners for time-series data such as cursive hand writings, protein structure prediction, speech recognition and many more task that require learning through long time lags [2][3][4], In this paper, we applied the concept of using recurrent networks with LSTM cells as hidden layer to learn the behaviours of a humanoid robot based on multiple sequences of joint data from 10 joints on the NAO robot. We show that the LSTM network is able to learn the patterns in the data and effectively classify the sequences into 6 different trained behaviors." @default.
- W2544692362 created "2016-11-04" @default.
- W2544692362 creator A5039687466 @default.
- W2544692362 creator A5043341364 @default.
- W2544692362 creator A5044840322 @default.
- W2544692362 creator A5063587446 @default.
- W2544692362 date "2014-12-01" @default.
- W2544692362 modified "2023-10-16" @default.
- W2544692362 title "Multiple sequence behavior recognition on humanoid robot using long short-term memory (LSTM)" @default.
- W2544692362 cites W2044999719 @default.
- W2544692362 cites W2046394129 @default.
- W2544692362 cites W2069143585 @default.
- W2544692362 cites W2073140603 @default.
- W2544692362 cites W2079735306 @default.
- W2544692362 cites W2088335308 @default.
- W2544692362 cites W2144499799 @default.
- W2544692362 doi "https://doi.org/10.1109/roma.2014.7295871" @default.
- W2544692362 hasPublicationYear "2014" @default.
- W2544692362 type Work @default.
- W2544692362 sameAs 2544692362 @default.
- W2544692362 citedByCount "19" @default.
- W2544692362 countsByYear W25446923622016 @default.
- W2544692362 countsByYear W25446923622017 @default.
- W2544692362 countsByYear W25446923622018 @default.
- W2544692362 countsByYear W25446923622019 @default.
- W2544692362 countsByYear W25446923622020 @default.
- W2544692362 countsByYear W25446923622021 @default.
- W2544692362 countsByYear W25446923622022 @default.
- W2544692362 countsByYear W25446923622023 @default.
- W2544692362 crossrefType "proceedings-article" @default.
- W2544692362 hasAuthorship W2544692362A5039687466 @default.
- W2544692362 hasAuthorship W2544692362A5043341364 @default.
- W2544692362 hasAuthorship W2544692362A5044840322 @default.
- W2544692362 hasAuthorship W2544692362A5063587446 @default.
- W2544692362 hasConcept C108583219 @default.
- W2544692362 hasConcept C119857082 @default.
- W2544692362 hasConcept C127413603 @default.
- W2544692362 hasConcept C133488467 @default.
- W2544692362 hasConcept C147168706 @default.
- W2544692362 hasConcept C154945302 @default.
- W2544692362 hasConcept C201995342 @default.
- W2544692362 hasConcept C2778112365 @default.
- W2544692362 hasConcept C2780451532 @default.
- W2544692362 hasConcept C28490314 @default.
- W2544692362 hasConcept C40506919 @default.
- W2544692362 hasConcept C41008148 @default.
- W2544692362 hasConcept C50644808 @default.
- W2544692362 hasConcept C54355233 @default.
- W2544692362 hasConcept C60692881 @default.
- W2544692362 hasConcept C86803240 @default.
- W2544692362 hasConcept C90509273 @default.
- W2544692362 hasConceptScore W2544692362C108583219 @default.
- W2544692362 hasConceptScore W2544692362C119857082 @default.
- W2544692362 hasConceptScore W2544692362C127413603 @default.
- W2544692362 hasConceptScore W2544692362C133488467 @default.
- W2544692362 hasConceptScore W2544692362C147168706 @default.
- W2544692362 hasConceptScore W2544692362C154945302 @default.
- W2544692362 hasConceptScore W2544692362C201995342 @default.
- W2544692362 hasConceptScore W2544692362C2778112365 @default.
- W2544692362 hasConceptScore W2544692362C2780451532 @default.
- W2544692362 hasConceptScore W2544692362C28490314 @default.
- W2544692362 hasConceptScore W2544692362C40506919 @default.
- W2544692362 hasConceptScore W2544692362C41008148 @default.
- W2544692362 hasConceptScore W2544692362C50644808 @default.
- W2544692362 hasConceptScore W2544692362C54355233 @default.
- W2544692362 hasConceptScore W2544692362C60692881 @default.
- W2544692362 hasConceptScore W2544692362C86803240 @default.
- W2544692362 hasConceptScore W2544692362C90509273 @default.
- W2544692362 hasLocation W25446923621 @default.
- W2544692362 hasOpenAccess W2544692362 @default.
- W2544692362 hasPrimaryLocation W25446923621 @default.
- W2544692362 hasRelatedWork W2544692362 @default.
- W2544692362 hasRelatedWork W2793022090 @default.
- W2544692362 hasRelatedWork W2919358988 @default.
- W2544692362 hasRelatedWork W3167026195 @default.
- W2544692362 hasRelatedWork W3192794374 @default.
- W2544692362 hasRelatedWork W4281386417 @default.
- W2544692362 hasRelatedWork W4297779434 @default.
- W2544692362 hasRelatedWork W4298168912 @default.
- W2544692362 hasRelatedWork W4315783664 @default.
- W2544692362 hasRelatedWork W4317242789 @default.
- W2544692362 isParatext "false" @default.
- W2544692362 isRetracted "false" @default.
- W2544692362 magId "2544692362" @default.
- W2544692362 workType "article" @default.