Matches in SemOpenAlex for { <https://semopenalex.org/work/W2544993917> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2544993917 abstract "In emission tomography (ET), fast developing Bayesian reconstruction methods can incorporate anatomical information derived from co-registered scanning modalities, such as magnetic resonance (MR) and computed tomography (CT). We propose a Bayesian image reconstruction method for single photon emission computed tomography (SPECT), using a joint entropy (JE) similarity measure to embed MR anatomical data. An optimized non-parametric Parzen window approach is used for fast and efficient estimation of the probability density function (PDF) of the JE metric. It is known that the quality of the Parzen estimates strongly depends on the kernel bandwidth of the smoothing function. When the density is over or under-smoothed, because of too large or small bandwidth value, this leads to an incorrect entropy estimate and, eventually, to a biased solution. To alleviate the problem of searching manually for the most suitable weight for the smoothing function and the number of bins for the histogram, we use an adaptive method to find these parameters automatically from the data on each iteration of the Bayesian algorithm. We assess the NRMSE-variance behaviour of the MAP-EM reconstruction method in relation to the quality of the PDF building. For the different bandwidth values of the Gaussian kernel for the density function, an emission image is reconstructed using MR data as a prior. Preliminary numerical experiments are performed using simulated co-registered 2D and 3D SPECT/MR data. Comparison of proposed technique with neighbourhood dependent anatomically-based prior is presented. Lesions are simulated to be apparent on the gray matter of the 3D SPECT data, but invisible on MRI. Preliminary results demonstrate that applying optimal density estimation for JE metric is feasible and more efficient compared to non-adaptive techniques" @default.
- W2544993917 created "2016-11-04" @default.
- W2544993917 creator A5016217712 @default.
- W2544993917 creator A5026956645 @default.
- W2544993917 creator A5032656034 @default.
- W2544993917 creator A5035709746 @default.
- W2544993917 creator A5076151014 @default.
- W2544993917 creator A5082106258 @default.
- W2544993917 creator A5082445591 @default.
- W2544993917 date "2010-10-01" @default.
- W2544993917 modified "2023-09-26" @default.
- W2544993917 title "ET Bayesian reconstruction using automatic bandwidth selection for joint entropy optimization" @default.
- W2544993917 cites W1489950266 @default.
- W2544993917 cites W1986571267 @default.
- W2544993917 cites W2021594562 @default.
- W2544993917 cites W2025415231 @default.
- W2544993917 cites W2048092465 @default.
- W2544993917 cites W2115780003 @default.
- W2544993917 cites W2129905273 @default.
- W2544993917 cites W2140935196 @default.
- W2544993917 cites W2142587291 @default.
- W2544993917 cites W2148956829 @default.
- W2544993917 cites W2156994346 @default.
- W2544993917 cites W2168530812 @default.
- W2544993917 cites W2533038408 @default.
- W2544993917 cites W2534646255 @default.
- W2544993917 cites W2541070966 @default.
- W2544993917 cites W2546928501 @default.
- W2544993917 cites W3104298728 @default.
- W2544993917 doi "https://doi.org/10.1109/nssmic.2010.5874415" @default.
- W2544993917 hasPublicationYear "2010" @default.
- W2544993917 type Work @default.
- W2544993917 sameAs 2544993917 @default.
- W2544993917 citedByCount "2" @default.
- W2544993917 countsByYear W25449939172012 @default.
- W2544993917 crossrefType "proceedings-article" @default.
- W2544993917 hasAuthorship W2544993917A5016217712 @default.
- W2544993917 hasAuthorship W2544993917A5026956645 @default.
- W2544993917 hasAuthorship W2544993917A5032656034 @default.
- W2544993917 hasAuthorship W2544993917A5035709746 @default.
- W2544993917 hasAuthorship W2544993917A5076151014 @default.
- W2544993917 hasAuthorship W2544993917A5082106258 @default.
- W2544993917 hasAuthorship W2544993917A5082445591 @default.
- W2544993917 hasConcept C105795698 @default.
- W2544993917 hasConcept C106301342 @default.
- W2544993917 hasConcept C106752470 @default.
- W2544993917 hasConcept C107673813 @default.
- W2544993917 hasConcept C11413529 @default.
- W2544993917 hasConcept C121332964 @default.
- W2544993917 hasConcept C141379421 @default.
- W2544993917 hasConcept C153180895 @default.
- W2544993917 hasConcept C154945302 @default.
- W2544993917 hasConcept C185429906 @default.
- W2544993917 hasConcept C189508267 @default.
- W2544993917 hasConcept C197055811 @default.
- W2544993917 hasConcept C31972630 @default.
- W2544993917 hasConcept C33923547 @default.
- W2544993917 hasConcept C3770464 @default.
- W2544993917 hasConcept C41008148 @default.
- W2544993917 hasConcept C62520636 @default.
- W2544993917 hasConcept C71134354 @default.
- W2544993917 hasConcept C9679016 @default.
- W2544993917 hasConceptScore W2544993917C105795698 @default.
- W2544993917 hasConceptScore W2544993917C106301342 @default.
- W2544993917 hasConceptScore W2544993917C106752470 @default.
- W2544993917 hasConceptScore W2544993917C107673813 @default.
- W2544993917 hasConceptScore W2544993917C11413529 @default.
- W2544993917 hasConceptScore W2544993917C121332964 @default.
- W2544993917 hasConceptScore W2544993917C141379421 @default.
- W2544993917 hasConceptScore W2544993917C153180895 @default.
- W2544993917 hasConceptScore W2544993917C154945302 @default.
- W2544993917 hasConceptScore W2544993917C185429906 @default.
- W2544993917 hasConceptScore W2544993917C189508267 @default.
- W2544993917 hasConceptScore W2544993917C197055811 @default.
- W2544993917 hasConceptScore W2544993917C31972630 @default.
- W2544993917 hasConceptScore W2544993917C33923547 @default.
- W2544993917 hasConceptScore W2544993917C3770464 @default.
- W2544993917 hasConceptScore W2544993917C41008148 @default.
- W2544993917 hasConceptScore W2544993917C62520636 @default.
- W2544993917 hasConceptScore W2544993917C71134354 @default.
- W2544993917 hasConceptScore W2544993917C9679016 @default.
- W2544993917 hasLocation W25449939171 @default.
- W2544993917 hasOpenAccess W2544993917 @default.
- W2544993917 hasPrimaryLocation W25449939171 @default.
- W2544993917 hasRelatedWork W1890316505 @default.
- W2544993917 hasRelatedWork W2042574171 @default.
- W2544993917 hasRelatedWork W2089376820 @default.
- W2544993917 hasRelatedWork W2126678392 @default.
- W2544993917 hasRelatedWork W2158155276 @default.
- W2544993917 hasRelatedWork W2352054028 @default.
- W2544993917 hasRelatedWork W2544993917 @default.
- W2544993917 hasRelatedWork W3005503672 @default.
- W2544993917 hasRelatedWork W4287870113 @default.
- W2544993917 hasRelatedWork W2341167183 @default.
- W2544993917 isParatext "false" @default.
- W2544993917 isRetracted "false" @default.
- W2544993917 magId "2544993917" @default.
- W2544993917 workType "article" @default.