Matches in SemOpenAlex for { <https://semopenalex.org/work/W2546526140> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2546526140 abstract "1Histopathology is the branch of pathology involved in the scientific study of disease at the tissue and cellular levels. It plays an essential part in the diagnosis, risk stratification and treatment monitoring of many diseases. It is a relatively young speciality with origins in clinical specialities such as surgery and medicine.1 Histopathology, over the years has witnessed its evolution from a mainly autopsy based pathology to the current molecular histopathology.2 With recent advances in science and technology and the incorporation of these to histopathological practice and acceptance of some philosophical concepts, in particular the functional correlation of morphological studies, the outlook of both histopathology and the Histopathologist has changed.2 The molecular age Histopathologist of today is practicing pathology in a totally different scenario than the preceding pathologists. Upto the mid 20th century, the pathologists based all of their diagnosis and histogenetic considerations solely on the patterns of growth and cell shapes seen with Haematoxylin and Eosin (H&E) stained slides, with occasional modest help provided by one or more special stains with inherent subjectivity and limitations of these simple tincturial stains. Objective measurement of microscopic features has been advocated for decades as a means to make the practice of histopatholog y more reproducible and scientific. With advances in computing technology, it is now possible to make this procedure suitable for diagnostic and prognostic determinations in histopathology by computerized morphometry.3 Pathologists have also been trying for some time to combine their human skills in histopatholog ical diagnosis with the advantages offered by computer systems. One such programme, artificial neural network (ANN) has been successfully used in selected areas of surgical pathology and cytopathology.4 Briefly, an artificial neural network (ANN) is a nonlinear, computational, mathematical model for information processing, with architectures inspired by neuronal organizational biology. The network is constructed of discrete artificial neurons or nodes, which are interconnected by routes or links that correspond to the axons in biological neurons. Like biological neurons, an artificial neuron summates the signals arriving from incoming connections. If this reaches a certain threshold, a signal is fired down the outgoing axons. The input data are presented to the layer of input neurons or evidence node with one input neuron required for each item of input data. The prediction of the neural network is given by the layer of output neurons or decision node. A hidden layer is interposed between input and output layers for the network to be able to perform more complex classification tasks.4 The authors5 studied ANN in the early and accurate diagnosis of acute cellular rejection in renal allograft recipients. This systematic approach increased the sensitivity of detection of early acute rejection (19 out of 21 cases) more than any of the 37 pathologists achieved by conventional histopathological assessment (17 out of 21)." @default.
- W2546526140 created "2016-11-11" @default.
- W2546526140 creator A5046042493 @default.
- W2546526140 creator A5063983429 @default.
- W2546526140 date "2009-01-01" @default.
- W2546526140 modified "2023-09-24" @default.
- W2546526140 title "Editorial Histopathology in present era" @default.
- W2546526140 cites W1975530897 @default.
- W2546526140 cites W2020264537 @default.
- W2546526140 cites W2058978992 @default.
- W2546526140 cites W2070862000 @default.
- W2546526140 cites W2092002844 @default.
- W2546526140 cites W2109495211 @default.
- W2546526140 cites W2122832739 @default.
- W2546526140 cites W2181001153 @default.
- W2546526140 cites W2184470325 @default.
- W2546526140 cites W2402572629 @default.
- W2546526140 hasPublicationYear "2009" @default.
- W2546526140 type Work @default.
- W2546526140 sameAs 2546526140 @default.
- W2546526140 citedByCount "0" @default.
- W2546526140 crossrefType "journal-article" @default.
- W2546526140 hasAuthorship W2546526140A5046042493 @default.
- W2546526140 hasAuthorship W2546526140A5063983429 @default.
- W2546526140 hasConcept C142724271 @default.
- W2546526140 hasConcept C19527891 @default.
- W2546526140 hasConcept C2994092119 @default.
- W2546526140 hasConcept C544855455 @default.
- W2546526140 hasConcept C71924100 @default.
- W2546526140 hasConceptScore W2546526140C142724271 @default.
- W2546526140 hasConceptScore W2546526140C19527891 @default.
- W2546526140 hasConceptScore W2546526140C2994092119 @default.
- W2546526140 hasConceptScore W2546526140C544855455 @default.
- W2546526140 hasConceptScore W2546526140C71924100 @default.
- W2546526140 hasLocation W25465261401 @default.
- W2546526140 hasOpenAccess W2546526140 @default.
- W2546526140 hasPrimaryLocation W25465261401 @default.
- W2546526140 hasRelatedWork W1988621417 @default.
- W2546526140 hasRelatedWork W2612654615 @default.
- W2546526140 hasRelatedWork W2774964116 @default.
- W2546526140 hasRelatedWork W2883463843 @default.
- W2546526140 hasRelatedWork W2897601127 @default.
- W2546526140 hasRelatedWork W2915860004 @default.
- W2546526140 hasRelatedWork W2940787586 @default.
- W2546526140 hasRelatedWork W2953035457 @default.
- W2546526140 hasRelatedWork W2953048903 @default.
- W2546526140 hasRelatedWork W2971222469 @default.
- W2546526140 hasRelatedWork W3009332900 @default.
- W2546526140 hasRelatedWork W3015685743 @default.
- W2546526140 hasRelatedWork W3048101421 @default.
- W2546526140 hasRelatedWork W3083478548 @default.
- W2546526140 hasRelatedWork W3103568526 @default.
- W2546526140 hasRelatedWork W3106334361 @default.
- W2546526140 hasRelatedWork W3138585605 @default.
- W2546526140 hasRelatedWork W3191870676 @default.
- W2546526140 hasRelatedWork W3203878718 @default.
- W2546526140 hasRelatedWork W3207351222 @default.
- W2546526140 isParatext "false" @default.
- W2546526140 isRetracted "false" @default.
- W2546526140 magId "2546526140" @default.
- W2546526140 workType "article" @default.