Matches in SemOpenAlex for { <https://semopenalex.org/work/W2546616350> ?p ?o ?g. }
- W2546616350 abstract "Extreme learning machine (ELM) which belongs to randomized algorithm categories, is versatile and an emerging learning algorithm. ELM has been developed for different application starting from pattern recognition, function estimation, regression analysis, time series analysis, and big data analysis etc. Unlike feed forward neural networks where slow convergence rate, imprecise learning parameters, presence of local minima are major bottles neck, This paper addresses these problems using different variants of ELM on some bench mark time series data. ELM and its variants where hidden nodes parameters like weights and biases are randomly generated and fixed during the time of learning process, also give results of weights as an output of single hidden layer feed forward neural networks (SLFNs) analytically. The paper performs experiments on two time series data and demonstrates that variants of ELM delivers good performance in generalized manner in several cases without compromising on accuracy." @default.
- W2546616350 created "2016-11-11" @default.
- W2546616350 creator A5017906663 @default.
- W2546616350 creator A5077442814 @default.
- W2546616350 creator A5079089746 @default.
- W2546616350 creator A5089917679 @default.
- W2546616350 date "2016-09-01" @default.
- W2546616350 modified "2023-09-24" @default.
- W2546616350 title "ELM variants comparison on applications of time series data forecasting" @default.
- W2546616350 cites W1596717185 @default.
- W2546616350 cites W1604591429 @default.
- W2546616350 cites W1606551523 @default.
- W2546616350 cites W1973485165 @default.
- W2546616350 cites W1977127140 @default.
- W2546616350 cites W1989386584 @default.
- W2546616350 cites W1993717606 @default.
- W2546616350 cites W1995382443 @default.
- W2546616350 cites W2026131661 @default.
- W2546616350 cites W2035740143 @default.
- W2546616350 cites W2039708501 @default.
- W2546616350 cites W2042184006 @default.
- W2546616350 cites W2050099778 @default.
- W2546616350 cites W2069315453 @default.
- W2546616350 cites W2075193177 @default.
- W2546616350 cites W2075846637 @default.
- W2546616350 cites W2090758866 @default.
- W2546616350 cites W2095635024 @default.
- W2546616350 cites W2101674911 @default.
- W2546616350 cites W2104698839 @default.
- W2546616350 cites W2108537597 @default.
- W2546616350 cites W2111072639 @default.
- W2546616350 cites W2114471530 @default.
- W2546616350 cites W2119821739 @default.
- W2546616350 cites W2131836320 @default.
- W2546616350 cites W2134603844 @default.
- W2546616350 cites W2141695047 @default.
- W2546616350 cites W2148446997 @default.
- W2546616350 cites W2158054309 @default.
- W2546616350 cites W2168618665 @default.
- W2546616350 cites W2217896605 @default.
- W2546616350 cites W2473649147 @default.
- W2546616350 cites W2545384749 @default.
- W2546616350 cites W2792298817 @default.
- W2546616350 doi "https://doi.org/10.1109/icacci.2016.7732244" @default.
- W2546616350 hasPublicationYear "2016" @default.
- W2546616350 type Work @default.
- W2546616350 sameAs 2546616350 @default.
- W2546616350 citedByCount "3" @default.
- W2546616350 countsByYear W25466163502017 @default.
- W2546616350 countsByYear W25466163502018 @default.
- W2546616350 crossrefType "proceedings-article" @default.
- W2546616350 hasAuthorship W2546616350A5017906663 @default.
- W2546616350 hasAuthorship W2546616350A5077442814 @default.
- W2546616350 hasAuthorship W2546616350A5079089746 @default.
- W2546616350 hasAuthorship W2546616350A5089917679 @default.
- W2546616350 hasConcept C11413529 @default.
- W2546616350 hasConcept C119857082 @default.
- W2546616350 hasConcept C134306372 @default.
- W2546616350 hasConcept C14036430 @default.
- W2546616350 hasConcept C143724316 @default.
- W2546616350 hasConcept C151406439 @default.
- W2546616350 hasConcept C151730666 @default.
- W2546616350 hasConcept C153180895 @default.
- W2546616350 hasConcept C154945302 @default.
- W2546616350 hasConcept C162324750 @default.
- W2546616350 hasConcept C186633575 @default.
- W2546616350 hasConcept C2777303404 @default.
- W2546616350 hasConcept C2780150128 @default.
- W2546616350 hasConcept C33923547 @default.
- W2546616350 hasConcept C41008148 @default.
- W2546616350 hasConcept C47702885 @default.
- W2546616350 hasConcept C50522688 @default.
- W2546616350 hasConcept C50644808 @default.
- W2546616350 hasConcept C78458016 @default.
- W2546616350 hasConcept C86803240 @default.
- W2546616350 hasConceptScore W2546616350C11413529 @default.
- W2546616350 hasConceptScore W2546616350C119857082 @default.
- W2546616350 hasConceptScore W2546616350C134306372 @default.
- W2546616350 hasConceptScore W2546616350C14036430 @default.
- W2546616350 hasConceptScore W2546616350C143724316 @default.
- W2546616350 hasConceptScore W2546616350C151406439 @default.
- W2546616350 hasConceptScore W2546616350C151730666 @default.
- W2546616350 hasConceptScore W2546616350C153180895 @default.
- W2546616350 hasConceptScore W2546616350C154945302 @default.
- W2546616350 hasConceptScore W2546616350C162324750 @default.
- W2546616350 hasConceptScore W2546616350C186633575 @default.
- W2546616350 hasConceptScore W2546616350C2777303404 @default.
- W2546616350 hasConceptScore W2546616350C2780150128 @default.
- W2546616350 hasConceptScore W2546616350C33923547 @default.
- W2546616350 hasConceptScore W2546616350C41008148 @default.
- W2546616350 hasConceptScore W2546616350C47702885 @default.
- W2546616350 hasConceptScore W2546616350C50522688 @default.
- W2546616350 hasConceptScore W2546616350C50644808 @default.
- W2546616350 hasConceptScore W2546616350C78458016 @default.
- W2546616350 hasConceptScore W2546616350C86803240 @default.
- W2546616350 hasLocation W25466163501 @default.
- W2546616350 hasOpenAccess W2546616350 @default.
- W2546616350 hasPrimaryLocation W25466163501 @default.
- W2546616350 hasRelatedWork W1437416296 @default.
- W2546616350 hasRelatedWork W1506983422 @default.