Matches in SemOpenAlex for { <https://semopenalex.org/work/W2546903261> ?p ?o ?g. }
- W2546903261 abstract "Hyperspectral remote sensing image (HSI) consists of hundreds of bands that contain rich space, radiation and spectral information. The high-dimensional data can also lead to the curse of dimensionality problem making it difficult to be used effectively. In this paper, we proposed a manifold learning algorithm to reduce the dimensionality for HSI data. For high dimensional datasets with continuous variables, it is often the case that the data points are arranged along with low dimensional structures, named manifolds, in the high dimensional space. Manifold learning aims to identifying those special low dimensional structures for subsequent usage such as classification or regression. However, many manifold learning algorithms perform an eigenvector analysis on a data similarity matrix whose size is N×N, where N is the number of data points. The memory complexity of the analysis is at least O(N2) that is not feasible for a regular computer to compute or storage for very large datasets. To solve this problem, we used statistical sampling methods to sample a subset of data points as landmarks. A skeleton of the manifold was then identified based on the landmarks. The remaining data points were then inserted into the skeleton by Locally Linear Embedding (LLE). We tested our algorithm on AVIRIS Salinas-A data set. The experimental results showed that the HSI dataset could be reduced to a lower-dimensional space for land use classification with good performance, and the main structure was preserved well." @default.
- W2546903261 created "2016-11-11" @default.
- W2546903261 creator A5000355393 @default.
- W2546903261 creator A5006956791 @default.
- W2546903261 creator A5008024321 @default.
- W2546903261 creator A5029817843 @default.
- W2546903261 creator A5034924266 @default.
- W2546903261 creator A5048589278 @default.
- W2546903261 creator A5079189561 @default.
- W2546903261 creator A5081201356 @default.
- W2546903261 creator A5083627327 @default.
- W2546903261 creator A5084954316 @default.
- W2546903261 creator A5086989815 @default.
- W2546903261 date "2016-07-01" @default.
- W2546903261 modified "2023-09-25" @default.
- W2546903261 title "The manifold learning for dimensionality reduction with hyperspectral image" @default.
- W2546903261 cites W113793858 @default.
- W2546903261 cites W2013051270 @default.
- W2546903261 cites W2014582301 @default.
- W2546903261 cites W2015837697 @default.
- W2546903261 cites W2018173560 @default.
- W2546903261 cites W2047078696 @default.
- W2546903261 cites W2053186076 @default.
- W2546903261 cites W2055140068 @default.
- W2546903261 cites W2063532964 @default.
- W2546903261 cites W2127808402 @default.
- W2546903261 cites W2137570937 @default.
- W2546903261 cites W2149544245 @default.
- W2546903261 cites W2150738795 @default.
- W2546903261 cites W2151599207 @default.
- W2546903261 cites W2156287497 @default.
- W2546903261 cites W2156761667 @default.
- W2546903261 cites W2160840682 @default.
- W2546903261 doi "https://doi.org/10.1109/igarss.2016.7729712" @default.
- W2546903261 hasPublicationYear "2016" @default.
- W2546903261 type Work @default.
- W2546903261 sameAs 2546903261 @default.
- W2546903261 citedByCount "2" @default.
- W2546903261 countsByYear W25469032612017 @default.
- W2546903261 countsByYear W25469032612018 @default.
- W2546903261 crossrefType "proceedings-article" @default.
- W2546903261 hasAuthorship W2546903261A5000355393 @default.
- W2546903261 hasAuthorship W2546903261A5006956791 @default.
- W2546903261 hasAuthorship W2546903261A5008024321 @default.
- W2546903261 hasAuthorship W2546903261A5029817843 @default.
- W2546903261 hasAuthorship W2546903261A5034924266 @default.
- W2546903261 hasAuthorship W2546903261A5048589278 @default.
- W2546903261 hasAuthorship W2546903261A5079189561 @default.
- W2546903261 hasAuthorship W2546903261A5081201356 @default.
- W2546903261 hasAuthorship W2546903261A5083627327 @default.
- W2546903261 hasAuthorship W2546903261A5084954316 @default.
- W2546903261 hasAuthorship W2546903261A5086989815 @default.
- W2546903261 hasConcept C111030470 @default.
- W2546903261 hasConcept C121332964 @default.
- W2546903261 hasConcept C127413603 @default.
- W2546903261 hasConcept C151876577 @default.
- W2546903261 hasConcept C153120616 @default.
- W2546903261 hasConcept C153180895 @default.
- W2546903261 hasConcept C154945302 @default.
- W2546903261 hasConcept C158693339 @default.
- W2546903261 hasConcept C159078339 @default.
- W2546903261 hasConcept C21080849 @default.
- W2546903261 hasConcept C32834561 @default.
- W2546903261 hasConcept C33923547 @default.
- W2546903261 hasConcept C41008148 @default.
- W2546903261 hasConcept C41608201 @default.
- W2546903261 hasConcept C529865628 @default.
- W2546903261 hasConcept C58489278 @default.
- W2546903261 hasConcept C62520636 @default.
- W2546903261 hasConcept C70518039 @default.
- W2546903261 hasConcept C78519656 @default.
- W2546903261 hasConceptScore W2546903261C111030470 @default.
- W2546903261 hasConceptScore W2546903261C121332964 @default.
- W2546903261 hasConceptScore W2546903261C127413603 @default.
- W2546903261 hasConceptScore W2546903261C151876577 @default.
- W2546903261 hasConceptScore W2546903261C153120616 @default.
- W2546903261 hasConceptScore W2546903261C153180895 @default.
- W2546903261 hasConceptScore W2546903261C154945302 @default.
- W2546903261 hasConceptScore W2546903261C158693339 @default.
- W2546903261 hasConceptScore W2546903261C159078339 @default.
- W2546903261 hasConceptScore W2546903261C21080849 @default.
- W2546903261 hasConceptScore W2546903261C32834561 @default.
- W2546903261 hasConceptScore W2546903261C33923547 @default.
- W2546903261 hasConceptScore W2546903261C41008148 @default.
- W2546903261 hasConceptScore W2546903261C41608201 @default.
- W2546903261 hasConceptScore W2546903261C529865628 @default.
- W2546903261 hasConceptScore W2546903261C58489278 @default.
- W2546903261 hasConceptScore W2546903261C62520636 @default.
- W2546903261 hasConceptScore W2546903261C70518039 @default.
- W2546903261 hasConceptScore W2546903261C78519656 @default.
- W2546903261 hasLocation W25469032611 @default.
- W2546903261 hasOpenAccess W2546903261 @default.
- W2546903261 hasPrimaryLocation W25469032611 @default.
- W2546903261 hasRelatedWork W1491720733 @default.
- W2546903261 hasRelatedWork W1972693409 @default.
- W2546903261 hasRelatedWork W1979775944 @default.
- W2546903261 hasRelatedWork W1995515053 @default.
- W2546903261 hasRelatedWork W1995843290 @default.
- W2546903261 hasRelatedWork W2018532026 @default.
- W2546903261 hasRelatedWork W2045634816 @default.