Matches in SemOpenAlex for { <https://semopenalex.org/work/W2547398736> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2547398736 abstract "Recently data mining over the uncertain data grabed more attention of the data mining community. To classify or cluster the valid or certain data, there are different approaches like DTL, Rule based Classification, Naive Bayes Classification and many more techniques. Its easy to classify the certain data but classification of the uncertain data is bit difficult. The uncertainty occurs in the a data because of the impresize measurement of the results, like scientific results, data from sensor netowork, measuring temperature, humidity, pressure and so on. From such a sources there is possibility of getting the uncertainty in a data. Main task is to handle the uncertainty of the data in order to classify or cluster it. It comes under the NP-Hard problems. Solving this problem, different approaches are available. We study the problem of clustering and classification of uncertain objects whose locations are described by probability density functions (pdf) means valued uncertainty. We show that the averaging algorithm with KMean algorithm, which generalises the k-means algorithm to handle uncertain objects, is very inefficient. The inefficiency comes from the fact that it does the averaging of the range of uncertain attribute. In UK-means, an object is assigned to the cluster whose representative has the smallest expected distance to the object. For arbitrary pdfs, expected distances are computed by numerical integrations, which are costly operations. Previous literature has applied bounding-box-based techniques to reduce the number of Expected Distance(ED) calculation. We use pruning techniques that are based on Voronoi diagrams to further reduce the number of expected distance calculation. These techniques are analytically proven to be more effective than the basic boundingbox-based technique previously known in the literature. We use R-tree index to organise the uncertain objects in groups so as to reduce pruning overheads. We conduct experiments to evaluate the effectiveness of our novel techniques, and extend the studies to different datasets. We show that these techniques are additive and, when used in combination, significantly outperform previously known methods." @default.
- W2547398736 created "2016-11-11" @default.
- W2547398736 creator A5000504219 @default.
- W2547398736 creator A5043103315 @default.
- W2547398736 date "2012-01-01" @default.
- W2547398736 modified "2023-09-24" @default.
- W2547398736 title "Uncertain Numerical Data Clustering Using VORONOI Diagram and R-Tree With Ensemble SVM" @default.
- W2547398736 cites W1505129060 @default.
- W2547398736 cites W1913022071 @default.
- W2547398736 cites W1969642980 @default.
- W2547398736 cites W2078686663 @default.
- W2547398736 cites W2110553125 @default.
- W2547398736 cites W2113728436 @default.
- W2547398736 cites W2116136273 @default.
- W2547398736 cites W2117487426 @default.
- W2547398736 cites W2119493805 @default.
- W2547398736 cites W2133839490 @default.
- W2547398736 cites W2137536943 @default.
- W2547398736 cites W2144342293 @default.
- W2547398736 cites W2170936641 @default.
- W2547398736 cites W2171943719 @default.
- W2547398736 hasPublicationYear "2012" @default.
- W2547398736 type Work @default.
- W2547398736 sameAs 2547398736 @default.
- W2547398736 citedByCount "0" @default.
- W2547398736 crossrefType "journal-article" @default.
- W2547398736 hasAuthorship W2547398736A5000504219 @default.
- W2547398736 hasAuthorship W2547398736A5043103315 @default.
- W2547398736 hasConcept C108010975 @default.
- W2547398736 hasConcept C11413529 @default.
- W2547398736 hasConcept C12267149 @default.
- W2547398736 hasConcept C124101348 @default.
- W2547398736 hasConcept C153180895 @default.
- W2547398736 hasConcept C154945302 @default.
- W2547398736 hasConcept C159985019 @default.
- W2547398736 hasConcept C192562407 @default.
- W2547398736 hasConcept C204323151 @default.
- W2547398736 hasConcept C24881265 @default.
- W2547398736 hasConcept C2524010 @default.
- W2547398736 hasConcept C2778865114 @default.
- W2547398736 hasConcept C33923547 @default.
- W2547398736 hasConcept C41008148 @default.
- W2547398736 hasConcept C52001869 @default.
- W2547398736 hasConcept C6557445 @default.
- W2547398736 hasConcept C73555534 @default.
- W2547398736 hasConcept C86803240 @default.
- W2547398736 hasConceptScore W2547398736C108010975 @default.
- W2547398736 hasConceptScore W2547398736C11413529 @default.
- W2547398736 hasConceptScore W2547398736C12267149 @default.
- W2547398736 hasConceptScore W2547398736C124101348 @default.
- W2547398736 hasConceptScore W2547398736C153180895 @default.
- W2547398736 hasConceptScore W2547398736C154945302 @default.
- W2547398736 hasConceptScore W2547398736C159985019 @default.
- W2547398736 hasConceptScore W2547398736C192562407 @default.
- W2547398736 hasConceptScore W2547398736C204323151 @default.
- W2547398736 hasConceptScore W2547398736C24881265 @default.
- W2547398736 hasConceptScore W2547398736C2524010 @default.
- W2547398736 hasConceptScore W2547398736C2778865114 @default.
- W2547398736 hasConceptScore W2547398736C33923547 @default.
- W2547398736 hasConceptScore W2547398736C41008148 @default.
- W2547398736 hasConceptScore W2547398736C52001869 @default.
- W2547398736 hasConceptScore W2547398736C6557445 @default.
- W2547398736 hasConceptScore W2547398736C73555534 @default.
- W2547398736 hasConceptScore W2547398736C86803240 @default.
- W2547398736 hasLocation W25473987361 @default.
- W2547398736 hasOpenAccess W2547398736 @default.
- W2547398736 hasPrimaryLocation W25473987361 @default.
- W2547398736 hasRelatedWork W1506487409 @default.
- W2547398736 hasRelatedWork W1892313398 @default.
- W2547398736 hasRelatedWork W2009341767 @default.
- W2547398736 hasRelatedWork W2127582447 @default.
- W2547398736 hasRelatedWork W2244596445 @default.
- W2547398736 hasRelatedWork W2396590878 @default.
- W2547398736 hasRelatedWork W2553978387 @default.
- W2547398736 hasRelatedWork W2757200503 @default.
- W2547398736 hasRelatedWork W2770476850 @default.
- W2547398736 hasRelatedWork W2776204567 @default.
- W2547398736 hasRelatedWork W2782461392 @default.
- W2547398736 hasRelatedWork W2799569696 @default.
- W2547398736 hasRelatedWork W286959512 @default.
- W2547398736 hasRelatedWork W2886628535 @default.
- W2547398736 hasRelatedWork W2922931220 @default.
- W2547398736 hasRelatedWork W2979780764 @default.
- W2547398736 hasRelatedWork W3104077659 @default.
- W2547398736 hasRelatedWork W1572493009 @default.
- W2547398736 hasRelatedWork W2172298484 @default.
- W2547398736 hasRelatedWork W2337248289 @default.
- W2547398736 isParatext "false" @default.
- W2547398736 isRetracted "false" @default.
- W2547398736 magId "2547398736" @default.
- W2547398736 workType "article" @default.