Matches in SemOpenAlex for { <https://semopenalex.org/work/W2547440996> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2547440996 endingPage "288" @default.
- W2547440996 startingPage "281" @default.
- W2547440996 abstract "We are at the beginning of the multicore era. Computers will have increasingly many cores (processors), but there is still no good programming framework for these architectures, and thus no simple and unified way for machine learning to take advantage of the potential speed up. In this paper, we develop a broadly applicable parallel programming method, one that is easily applied to many different learning algorithms. Our work is in distinct contrast to the tradition in machine learning of designing (often ingenious) ways to speed up a single algorithm at a time. Specifically, we show that algorithms that fit the Statistical Query model [15] can be written in a certain ‘summation form,’ which allows them to be easily parallelized on multicore computers. We adapt Google's map-reduce [7] paradigm to demonstrate this parallel speed up technique on a variety of learning algorithms including locally weighted linear regression (LWLR), k-means, logistic regression (LR), naive Bayes (NB), SVM, ICA, PCA, gaussian discriminant analysis (GDA), EM, and backpropagation (NN). Our experimental results show basically linear speedup with an increasing number of processors." @default.
- W2547440996 created "2016-11-11" @default.
- W2547440996 creator A5044005697 @default.
- W2547440996 creator A5045413165 @default.
- W2547440996 creator A5073032636 @default.
- W2547440996 date "2007-01-01" @default.
- W2547440996 modified "2023-10-02" @default.
- W2547440996 title "Map-Reduce for Machine Learning on Multicore" @default.
- W2547440996 hasPublicationYear "2007" @default.
- W2547440996 type Work @default.
- W2547440996 sameAs 2547440996 @default.
- W2547440996 citedByCount "1" @default.
- W2547440996 countsByYear W25474409962014 @default.
- W2547440996 crossrefType "journal-article" @default.
- W2547440996 hasAuthorship W2547440996A5044005697 @default.
- W2547440996 hasAuthorship W2547440996A5045413165 @default.
- W2547440996 hasAuthorship W2547440996A5073032636 @default.
- W2547440996 hasConcept C11413529 @default.
- W2547440996 hasConcept C119857082 @default.
- W2547440996 hasConcept C12267149 @default.
- W2547440996 hasConcept C154945302 @default.
- W2547440996 hasConcept C173608175 @default.
- W2547440996 hasConcept C41008148 @default.
- W2547440996 hasConcept C68339613 @default.
- W2547440996 hasConcept C78766204 @default.
- W2547440996 hasConceptScore W2547440996C11413529 @default.
- W2547440996 hasConceptScore W2547440996C119857082 @default.
- W2547440996 hasConceptScore W2547440996C12267149 @default.
- W2547440996 hasConceptScore W2547440996C154945302 @default.
- W2547440996 hasConceptScore W2547440996C173608175 @default.
- W2547440996 hasConceptScore W2547440996C41008148 @default.
- W2547440996 hasConceptScore W2547440996C68339613 @default.
- W2547440996 hasConceptScore W2547440996C78766204 @default.
- W2547440996 hasLocation W25474409961 @default.
- W2547440996 hasOpenAccess W2547440996 @default.
- W2547440996 hasPrimaryLocation W25474409961 @default.
- W2547440996 hasRelatedWork W1519179477 @default.
- W2547440996 hasRelatedWork W1908407117 @default.
- W2547440996 hasRelatedWork W1934946603 @default.
- W2547440996 hasRelatedWork W1971774955 @default.
- W2547440996 hasRelatedWork W2013928556 @default.
- W2547440996 hasRelatedWork W2041900761 @default.
- W2547440996 hasRelatedWork W2065902946 @default.
- W2547440996 hasRelatedWork W2106955134 @default.
- W2547440996 hasRelatedWork W2123483550 @default.
- W2547440996 hasRelatedWork W2127941149 @default.
- W2547440996 hasRelatedWork W2244133772 @default.
- W2547440996 hasRelatedWork W2256809807 @default.
- W2547440996 hasRelatedWork W2520178508 @default.
- W2547440996 hasRelatedWork W2900214122 @default.
- W2547440996 hasRelatedWork W2917925239 @default.
- W2547440996 hasRelatedWork W2963865397 @default.
- W2547440996 hasRelatedWork W2980402699 @default.
- W2547440996 hasRelatedWork W3037721581 @default.
- W2547440996 hasRelatedWork W3082046152 @default.
- W2547440996 hasRelatedWork W94363386 @default.
- W2547440996 isParatext "false" @default.
- W2547440996 isRetracted "false" @default.
- W2547440996 magId "2547440996" @default.
- W2547440996 workType "article" @default.