Matches in SemOpenAlex for { <https://semopenalex.org/work/W2547564988> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2547564988 abstract "The aim of the present work is to study the free and forced non-linear vibration problem of L-frames with semi-rigid connections using a finite element formulation. For this, an efficient non-linear finite element program for the static and dynamic analysis of frames is developed. The equilibrium paths are obtained through continuation techniques together with Newton-Raphson method. The solution of the system of ordinary differential equations of motion is obtained by Newmark implicit numerical integration method together with adaptive strategies for the automatic increment of the time step. The buckling and post-buckling analysis of frames is an important problem in the design of structures, in particular in the analysis of slender steel frames. It is well known that in many frame structures the analysis of columns or beam- columns as independent members may lead to erroneous results, particularly at large deflections. In some configurations the critical load and in particular the post-buckling behavior is affected by the other members meeting at the ends of the column. In a famous paper, Koiter (1967) showed that L-frames exhibit an asymmetric bifurcation and, as a consequence, its load carrying capacity is affect by imperfections. These results were confirmed experimentally by Roorda (1965). The initial post-buckling behavior of L-frames has been discussed at length by various authors in the past (Koiter, 1967, Roorda and Chilver, 1970, Brush and Almroth, 1975, Bazant and Cedolin, 1991), using asymptotic expansions of either the potential energy or the equilibrium equations governing the non-linear response of the frame- work. These studies are usually concerned with the determination of the initial slope and curvature of the post-buckling response. As shown by Koiter (1967), these two results are enough to characterize the type of bifurcation and can be used to estimate the imperfection sensitivity of the structure. However, these approximate solutions can describe only the initial post-buckling behavior of the frame. The same geometry used by Koiter has also been used in the last two decades by several authors to test the efficiency of several non-linear finite element formulations for planar frames as well as incremental-iterative strategies for the solution of eminently non-linear problems. This interest is due to the highly non-linear response of L-frames under eccentric loads. Nonetheless little is known on the influence of the frame parameters and load and geometric imperfections on the equilibrium and stability behavior of steel frames with flexible connection under static and dynamic loading. Galvao et al. (2005a) conducted a detailed parametric analysis to study the influence of the stiffness of the lateral bracing, boundary conditions as well as load and geometric imperfections on the non-linear response and imperfection sensitivity of this frame. For this an efficient non-linear finite element formulation for the analysis of planar elastic frames was used together with a non-linear solution methodology, which solves the resulting non-linear equations and obtains non-linear equilibrium paths through the Newton-Raphson method together with path-following techniques, such as arc-length schemes (Crisfield, 1991). The aim of the present work is to conduct a dynamic analysis of L-frames and to study the influence of the stiffness of the connections as well as load and geometric imperfections on the nonlinear response of L-frames. These results provides some insight as to the source and mechanism of asymmetric bifurcation and imperfection sensitivity in some frames and may help engineers to evaluate the importance of the geometrical second order effect and connection flexibility in the analysis of slender frames." @default.
- W2547564988 created "2016-11-11" @default.
- W2547564988 creator A5016400856 @default.
- W2547564988 creator A5039268414 @default.
- W2547564988 creator A5042644828 @default.
- W2547564988 creator A5057280068 @default.
- W2547564988 creator A5080713211 @default.
- W2547564988 date "2005-01-01" @default.
- W2547564988 modified "2023-09-24" @default.
- W2547564988 title "STABILITY AND VIBRATION ANALYSIS OF SLENDER L-FRAMES WITH SEMI-RIGID CONNECTIONS" @default.
- W2547564988 cites W1987107140 @default.
- W2547564988 cites W2064331996 @default.
- W2547564988 cites W2067342011 @default.
- W2547564988 cites W2128065058 @default.
- W2547564988 cites W589696060 @default.
- W2547564988 cites W612077802 @default.
- W2547564988 cites W780405283 @default.
- W2547564988 hasPublicationYear "2005" @default.
- W2547564988 type Work @default.
- W2547564988 sameAs 2547564988 @default.
- W2547564988 citedByCount "0" @default.
- W2547564988 crossrefType "journal-article" @default.
- W2547564988 hasAuthorship W2547564988A5016400856 @default.
- W2547564988 hasAuthorship W2547564988A5039268414 @default.
- W2547564988 hasAuthorship W2547564988A5042644828 @default.
- W2547564988 hasAuthorship W2547564988A5057280068 @default.
- W2547564988 hasAuthorship W2547564988A5080713211 @default.
- W2547564988 hasConcept C121332964 @default.
- W2547564988 hasConcept C127413603 @default.
- W2547564988 hasConcept C134306372 @default.
- W2547564988 hasConcept C135628077 @default.
- W2547564988 hasConcept C14037181 @default.
- W2547564988 hasConcept C158622935 @default.
- W2547564988 hasConcept C168834538 @default.
- W2547564988 hasConcept C198394728 @default.
- W2547564988 hasConcept C2777457327 @default.
- W2547564988 hasConcept C2781349735 @default.
- W2547564988 hasConcept C33923547 @default.
- W2547564988 hasConcept C48753275 @default.
- W2547564988 hasConcept C51544822 @default.
- W2547564988 hasConcept C62520636 @default.
- W2547564988 hasConcept C66938386 @default.
- W2547564988 hasConcept C74650414 @default.
- W2547564988 hasConcept C78045399 @default.
- W2547564988 hasConcept C85476182 @default.
- W2547564988 hasConceptScore W2547564988C121332964 @default.
- W2547564988 hasConceptScore W2547564988C127413603 @default.
- W2547564988 hasConceptScore W2547564988C134306372 @default.
- W2547564988 hasConceptScore W2547564988C135628077 @default.
- W2547564988 hasConceptScore W2547564988C14037181 @default.
- W2547564988 hasConceptScore W2547564988C158622935 @default.
- W2547564988 hasConceptScore W2547564988C168834538 @default.
- W2547564988 hasConceptScore W2547564988C198394728 @default.
- W2547564988 hasConceptScore W2547564988C2777457327 @default.
- W2547564988 hasConceptScore W2547564988C2781349735 @default.
- W2547564988 hasConceptScore W2547564988C33923547 @default.
- W2547564988 hasConceptScore W2547564988C48753275 @default.
- W2547564988 hasConceptScore W2547564988C51544822 @default.
- W2547564988 hasConceptScore W2547564988C62520636 @default.
- W2547564988 hasConceptScore W2547564988C66938386 @default.
- W2547564988 hasConceptScore W2547564988C74650414 @default.
- W2547564988 hasConceptScore W2547564988C78045399 @default.
- W2547564988 hasConceptScore W2547564988C85476182 @default.
- W2547564988 hasLocation W25475649881 @default.
- W2547564988 hasOpenAccess W2547564988 @default.
- W2547564988 hasPrimaryLocation W25475649881 @default.
- W2547564988 hasRelatedWork W1531873999 @default.
- W2547564988 hasRelatedWork W2000399539 @default.
- W2547564988 hasRelatedWork W2005177414 @default.
- W2547564988 hasRelatedWork W2014393414 @default.
- W2547564988 hasRelatedWork W2034275626 @default.
- W2547564988 hasRelatedWork W2041639371 @default.
- W2547564988 hasRelatedWork W2093121470 @default.
- W2547564988 hasRelatedWork W2162206859 @default.
- W2547564988 hasRelatedWork W2204638891 @default.
- W2547564988 hasRelatedWork W2213773594 @default.
- W2547564988 hasRelatedWork W2333508117 @default.
- W2547564988 hasRelatedWork W2557566804 @default.
- W2547564988 hasRelatedWork W2754723211 @default.
- W2547564988 hasRelatedWork W2801936191 @default.
- W2547564988 hasRelatedWork W282576808 @default.
- W2547564988 hasRelatedWork W2964208206 @default.
- W2547564988 hasRelatedWork W3048005600 @default.
- W2547564988 hasRelatedWork W362434497 @default.
- W2547564988 hasRelatedWork W1605836048 @default.
- W2547564988 hasRelatedWork W2326452021 @default.
- W2547564988 isParatext "false" @default.
- W2547564988 isRetracted "false" @default.
- W2547564988 magId "2547564988" @default.
- W2547564988 workType "article" @default.