Matches in SemOpenAlex for { <https://semopenalex.org/work/W2547571856> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2547571856 abstract "Recently, the fusion of hyperspectral and light detection and ranging (LiDAR) data has obtained a great attention in the remote sensing community. In this paper, we propose a new feature fusion framework using deep neural network (DNN). The proposed framework employs a novel 3D convolutional neural network (CNN) to extract the spectral-spatial features of hyperspectral data, a deep 2D CNN to extract the elevation features of LiDAR data, and then a fully connected deep neural network to fuse the extracted features in the previous CNNs. Through the aforementioned three deep networks, one can extract the discriminant and invariant features of hyperspectral and LiDAR data. At last, logistic regression is used to produce the final classification results. The experimental results reveal that the proposed deep fusion model provides competitive results. Furthermore, the proposed deep fusion idea opens a new window for future research." @default.
- W2547571856 created "2016-11-11" @default.
- W2547571856 creator A5027034650 @default.
- W2547571856 creator A5027099198 @default.
- W2547571856 creator A5034748006 @default.
- W2547571856 creator A5051045240 @default.
- W2547571856 creator A5074919292 @default.
- W2547571856 date "2016-07-01" @default.
- W2547571856 modified "2023-09-23" @default.
- W2547571856 title "Deep fusion of hyperspectral and LiDAR data for thematic classification" @default.
- W2547571856 cites W2019377328 @default.
- W2547571856 cites W2084170803 @default.
- W2547571856 cites W2163922914 @default.
- W2547571856 cites W2165796970 @default.
- W2547571856 cites W2296450878 @default.
- W2547571856 doi "https://doi.org/10.1109/igarss.2016.7729930" @default.
- W2547571856 hasPublicationYear "2016" @default.
- W2547571856 type Work @default.
- W2547571856 sameAs 2547571856 @default.
- W2547571856 citedByCount "15" @default.
- W2547571856 countsByYear W25475718562017 @default.
- W2547571856 countsByYear W25475718562018 @default.
- W2547571856 countsByYear W25475718562019 @default.
- W2547571856 countsByYear W25475718562020 @default.
- W2547571856 countsByYear W25475718562021 @default.
- W2547571856 countsByYear W25475718562022 @default.
- W2547571856 countsByYear W25475718562023 @default.
- W2547571856 crossrefType "proceedings-article" @default.
- W2547571856 hasAuthorship W2547571856A5027034650 @default.
- W2547571856 hasAuthorship W2547571856A5027099198 @default.
- W2547571856 hasAuthorship W2547571856A5034748006 @default.
- W2547571856 hasAuthorship W2547571856A5051045240 @default.
- W2547571856 hasAuthorship W2547571856A5074919292 @default.
- W2547571856 hasConcept C108583219 @default.
- W2547571856 hasConcept C119599485 @default.
- W2547571856 hasConcept C127413603 @default.
- W2547571856 hasConcept C138885662 @default.
- W2547571856 hasConcept C141353440 @default.
- W2547571856 hasConcept C153180895 @default.
- W2547571856 hasConcept C154945302 @default.
- W2547571856 hasConcept C158525013 @default.
- W2547571856 hasConcept C159078339 @default.
- W2547571856 hasConcept C205649164 @default.
- W2547571856 hasConcept C33954974 @default.
- W2547571856 hasConcept C41008148 @default.
- W2547571856 hasConcept C41895202 @default.
- W2547571856 hasConcept C50644808 @default.
- W2547571856 hasConcept C51399673 @default.
- W2547571856 hasConcept C52622490 @default.
- W2547571856 hasConcept C62649853 @default.
- W2547571856 hasConcept C81363708 @default.
- W2547571856 hasConceptScore W2547571856C108583219 @default.
- W2547571856 hasConceptScore W2547571856C119599485 @default.
- W2547571856 hasConceptScore W2547571856C127413603 @default.
- W2547571856 hasConceptScore W2547571856C138885662 @default.
- W2547571856 hasConceptScore W2547571856C141353440 @default.
- W2547571856 hasConceptScore W2547571856C153180895 @default.
- W2547571856 hasConceptScore W2547571856C154945302 @default.
- W2547571856 hasConceptScore W2547571856C158525013 @default.
- W2547571856 hasConceptScore W2547571856C159078339 @default.
- W2547571856 hasConceptScore W2547571856C205649164 @default.
- W2547571856 hasConceptScore W2547571856C33954974 @default.
- W2547571856 hasConceptScore W2547571856C41008148 @default.
- W2547571856 hasConceptScore W2547571856C41895202 @default.
- W2547571856 hasConceptScore W2547571856C50644808 @default.
- W2547571856 hasConceptScore W2547571856C51399673 @default.
- W2547571856 hasConceptScore W2547571856C52622490 @default.
- W2547571856 hasConceptScore W2547571856C62649853 @default.
- W2547571856 hasConceptScore W2547571856C81363708 @default.
- W2547571856 hasLocation W25475718561 @default.
- W2547571856 hasOpenAccess W2547571856 @default.
- W2547571856 hasPrimaryLocation W25475718561 @default.
- W2547571856 hasRelatedWork W1967165137 @default.
- W2547571856 hasRelatedWork W2030080266 @default.
- W2547571856 hasRelatedWork W2031928588 @default.
- W2547571856 hasRelatedWork W2104177156 @default.
- W2547571856 hasRelatedWork W2349156330 @default.
- W2547571856 hasRelatedWork W2604795894 @default.
- W2547571856 hasRelatedWork W2805400851 @default.
- W2547571856 hasRelatedWork W2808968757 @default.
- W2547571856 hasRelatedWork W3043526427 @default.
- W2547571856 hasRelatedWork W4241000610 @default.
- W2547571856 isParatext "false" @default.
- W2547571856 isRetracted "false" @default.
- W2547571856 magId "2547571856" @default.
- W2547571856 workType "article" @default.