Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548050493> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2548050493 abstract "Sparse coding provides an excellent image prior for hyperspectral images (HSIs) denoising. However, on one hand, it is challenging to capture the structure within each sparse code for improving the reconstruction accuracy, on the other hand, the inconsistent recovery of the sparse codes corrupts the spectrum similarity in each homogeneous cluster of the HSI. To address these problems, we first propose a novel covariance matrix estimation based structured sparse coding method, where the sparse code matrix is modeled by a matrix normal distribution with a full covariance matrix. By estimating the covariance matrix with a latent variable based Bayesian framework, the data-dependent and noise-robust structure for each sparse code is learned from the noisy observation, with which the sparse codes are reconstructed accurately. Then, an intra-cluster filtering is employed to restore the spectrum similarity in each cluster. Experimental results demonstrate that the proposed method outperforms several state-of-the-art methods in HSIs denoising." @default.
- W2548050493 created "2016-11-11" @default.
- W2548050493 creator A5003799076 @default.
- W2548050493 creator A5028235866 @default.
- W2548050493 creator A5046078938 @default.
- W2548050493 creator A5084889194 @default.
- W2548050493 date "2016-07-01" @default.
- W2548050493 modified "2023-10-12" @default.
- W2548050493 title "Hyperspectral imagery denoising using covariance matrix estimation based structured sparse coding and intra-cluster filtering" @default.
- W2548050493 cites W1899329334 @default.
- W2548050493 cites W1963408805 @default.
- W2548050493 cites W1974438823 @default.
- W2548050493 cites W1980849288 @default.
- W2548050493 cites W1985242206 @default.
- W2548050493 cites W2056370875 @default.
- W2548050493 cites W2093429889 @default.
- W2548050493 cites W2095906131 @default.
- W2548050493 cites W2097073572 @default.
- W2548050493 cites W2171520281 @default.
- W2548050493 cites W2201252054 @default.
- W2548050493 cites W2244252827 @default.
- W2548050493 doi "https://doi.org/10.1109/igarss.2016.7730814" @default.
- W2548050493 hasPublicationYear "2016" @default.
- W2548050493 type Work @default.
- W2548050493 sameAs 2548050493 @default.
- W2548050493 citedByCount "0" @default.
- W2548050493 crossrefType "proceedings-article" @default.
- W2548050493 hasAuthorship W2548050493A5003799076 @default.
- W2548050493 hasAuthorship W2548050493A5028235866 @default.
- W2548050493 hasAuthorship W2548050493A5046078938 @default.
- W2548050493 hasAuthorship W2548050493A5084889194 @default.
- W2548050493 hasConcept C105795698 @default.
- W2548050493 hasConcept C11413529 @default.
- W2548050493 hasConcept C121332964 @default.
- W2548050493 hasConcept C124066611 @default.
- W2548050493 hasConcept C153180895 @default.
- W2548050493 hasConcept C154945302 @default.
- W2548050493 hasConcept C159078339 @default.
- W2548050493 hasConcept C163294075 @default.
- W2548050493 hasConcept C163716315 @default.
- W2548050493 hasConcept C178650346 @default.
- W2548050493 hasConcept C180877172 @default.
- W2548050493 hasConcept C185142706 @default.
- W2548050493 hasConcept C33923547 @default.
- W2548050493 hasConcept C41008148 @default.
- W2548050493 hasConcept C56372850 @default.
- W2548050493 hasConcept C62520636 @default.
- W2548050493 hasConcept C77637269 @default.
- W2548050493 hasConceptScore W2548050493C105795698 @default.
- W2548050493 hasConceptScore W2548050493C11413529 @default.
- W2548050493 hasConceptScore W2548050493C121332964 @default.
- W2548050493 hasConceptScore W2548050493C124066611 @default.
- W2548050493 hasConceptScore W2548050493C153180895 @default.
- W2548050493 hasConceptScore W2548050493C154945302 @default.
- W2548050493 hasConceptScore W2548050493C159078339 @default.
- W2548050493 hasConceptScore W2548050493C163294075 @default.
- W2548050493 hasConceptScore W2548050493C163716315 @default.
- W2548050493 hasConceptScore W2548050493C178650346 @default.
- W2548050493 hasConceptScore W2548050493C180877172 @default.
- W2548050493 hasConceptScore W2548050493C185142706 @default.
- W2548050493 hasConceptScore W2548050493C33923547 @default.
- W2548050493 hasConceptScore W2548050493C41008148 @default.
- W2548050493 hasConceptScore W2548050493C56372850 @default.
- W2548050493 hasConceptScore W2548050493C62520636 @default.
- W2548050493 hasConceptScore W2548050493C77637269 @default.
- W2548050493 hasLocation W25480504931 @default.
- W2548050493 hasOpenAccess W2548050493 @default.
- W2548050493 hasPrimaryLocation W25480504931 @default.
- W2548050493 hasRelatedWork W1582456702 @default.
- W2548050493 hasRelatedWork W2000355138 @default.
- W2548050493 hasRelatedWork W2009741049 @default.
- W2548050493 hasRelatedWork W2072026894 @default.
- W2548050493 hasRelatedWork W2116684582 @default.
- W2548050493 hasRelatedWork W2312245527 @default.
- W2548050493 hasRelatedWork W2341218011 @default.
- W2548050493 hasRelatedWork W2511651837 @default.
- W2548050493 hasRelatedWork W2601668425 @default.
- W2548050493 hasRelatedWork W2729550389 @default.
- W2548050493 hasRelatedWork W2734709478 @default.
- W2548050493 hasRelatedWork W2748967439 @default.
- W2548050493 hasRelatedWork W2783282829 @default.
- W2548050493 hasRelatedWork W2790999059 @default.
- W2548050493 hasRelatedWork W2793804339 @default.
- W2548050493 hasRelatedWork W2910550880 @default.
- W2548050493 hasRelatedWork W2945754102 @default.
- W2548050493 hasRelatedWork W2963213461 @default.
- W2548050493 hasRelatedWork W2986797280 @default.
- W2548050493 hasRelatedWork W637287392 @default.
- W2548050493 isParatext "false" @default.
- W2548050493 isRetracted "false" @default.
- W2548050493 magId "2548050493" @default.
- W2548050493 workType "article" @default.