Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548195627> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2548195627 endingPage "495" @default.
- W2548195627 startingPage "480" @default.
- W2548195627 abstract "Recent developments in the area of deep learning have been proved extremely beneficial for several natural language processing tasks, such as sentiment analysis, question answering, and machine translation. In this paper we exploit such advances by tailoring the ontology learning problem as a transductive reasoning task that learns to convert knowledge from natural language to a logic-based specification. More precisely, using a sample of definitory sentences generated starting by a synthetic grammar, we trained Recurrent Neural Network (RNN) based architectures to extract OWL formulae from text. In addition to the low feature engineering costs, our system shows good generalisation capabilities over the lexicon and the syntactic structure. The encouraging results obtained in the paper provide a first evidence of the potential of deep learning techniques towards long term ontology learning challenges such as improving domain independence, reducing engineering costs, and dealing with variable language forms." @default.
- W2548195627 created "2016-11-11" @default.
- W2548195627 creator A5012562128 @default.
- W2548195627 creator A5043305308 @default.
- W2548195627 creator A5069353228 @default.
- W2548195627 date "2016-01-01" @default.
- W2548195627 modified "2023-10-18" @default.
- W2548195627 title "Ontology Learning in the Deep" @default.
- W2548195627 cites W2131387542 @default.
- W2548195627 cites W2157331557 @default.
- W2548195627 cites W2399456070 @default.
- W2548195627 cites W2963440143 @default.
- W2548195627 cites W4251356326 @default.
- W2548195627 cites W999442090 @default.
- W2548195627 doi "https://doi.org/10.1007/978-3-319-49004-5_31" @default.
- W2548195627 hasPublicationYear "2016" @default.
- W2548195627 type Work @default.
- W2548195627 sameAs 2548195627 @default.
- W2548195627 citedByCount "34" @default.
- W2548195627 countsByYear W25481956272017 @default.
- W2548195627 countsByYear W25481956272018 @default.
- W2548195627 countsByYear W25481956272019 @default.
- W2548195627 countsByYear W25481956272020 @default.
- W2548195627 countsByYear W25481956272021 @default.
- W2548195627 countsByYear W25481956272022 @default.
- W2548195627 countsByYear W25481956272023 @default.
- W2548195627 crossrefType "book-chapter" @default.
- W2548195627 hasAuthorship W2548195627A5012562128 @default.
- W2548195627 hasAuthorship W2548195627A5043305308 @default.
- W2548195627 hasAuthorship W2548195627A5069353228 @default.
- W2548195627 hasConcept C108583219 @default.
- W2548195627 hasConcept C111472728 @default.
- W2548195627 hasConcept C134306372 @default.
- W2548195627 hasConcept C138885662 @default.
- W2548195627 hasConcept C154945302 @default.
- W2548195627 hasConcept C165696696 @default.
- W2548195627 hasConcept C195324797 @default.
- W2548195627 hasConcept C203005215 @default.
- W2548195627 hasConcept C204321447 @default.
- W2548195627 hasConcept C207685749 @default.
- W2548195627 hasConcept C25810664 @default.
- W2548195627 hasConcept C26022165 @default.
- W2548195627 hasConcept C2776401178 @default.
- W2548195627 hasConcept C2777002027 @default.
- W2548195627 hasConcept C2778121359 @default.
- W2548195627 hasConcept C2778827112 @default.
- W2548195627 hasConcept C33923547 @default.
- W2548195627 hasConcept C36503486 @default.
- W2548195627 hasConcept C38652104 @default.
- W2548195627 hasConcept C41008148 @default.
- W2548195627 hasConcept C41895202 @default.
- W2548195627 hasConcept C44291984 @default.
- W2548195627 hasConcept C50971890 @default.
- W2548195627 hasConcept C78726541 @default.
- W2548195627 hasConceptScore W2548195627C108583219 @default.
- W2548195627 hasConceptScore W2548195627C111472728 @default.
- W2548195627 hasConceptScore W2548195627C134306372 @default.
- W2548195627 hasConceptScore W2548195627C138885662 @default.
- W2548195627 hasConceptScore W2548195627C154945302 @default.
- W2548195627 hasConceptScore W2548195627C165696696 @default.
- W2548195627 hasConceptScore W2548195627C195324797 @default.
- W2548195627 hasConceptScore W2548195627C203005215 @default.
- W2548195627 hasConceptScore W2548195627C204321447 @default.
- W2548195627 hasConceptScore W2548195627C207685749 @default.
- W2548195627 hasConceptScore W2548195627C25810664 @default.
- W2548195627 hasConceptScore W2548195627C26022165 @default.
- W2548195627 hasConceptScore W2548195627C2776401178 @default.
- W2548195627 hasConceptScore W2548195627C2777002027 @default.
- W2548195627 hasConceptScore W2548195627C2778121359 @default.
- W2548195627 hasConceptScore W2548195627C2778827112 @default.
- W2548195627 hasConceptScore W2548195627C33923547 @default.
- W2548195627 hasConceptScore W2548195627C36503486 @default.
- W2548195627 hasConceptScore W2548195627C38652104 @default.
- W2548195627 hasConceptScore W2548195627C41008148 @default.
- W2548195627 hasConceptScore W2548195627C41895202 @default.
- W2548195627 hasConceptScore W2548195627C44291984 @default.
- W2548195627 hasConceptScore W2548195627C50971890 @default.
- W2548195627 hasConceptScore W2548195627C78726541 @default.
- W2548195627 hasLocation W25481956271 @default.
- W2548195627 hasOpenAccess W2548195627 @default.
- W2548195627 hasPrimaryLocation W25481956271 @default.
- W2548195627 hasRelatedWork W1483367581 @default.
- W2548195627 hasRelatedWork W1520485300 @default.
- W2548195627 hasRelatedWork W1522199655 @default.
- W2548195627 hasRelatedWork W1603247775 @default.
- W2548195627 hasRelatedWork W1613022964 @default.
- W2548195627 hasRelatedWork W2043678335 @default.
- W2548195627 hasRelatedWork W2739853160 @default.
- W2548195627 hasRelatedWork W2963655790 @default.
- W2548195627 hasRelatedWork W3030113794 @default.
- W2548195627 hasRelatedWork W3107474891 @default.
- W2548195627 isParatext "false" @default.
- W2548195627 isRetracted "false" @default.
- W2548195627 magId "2548195627" @default.
- W2548195627 workType "book-chapter" @default.