Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548198516> ?p ?o ?g. }
- W2548198516 endingPage "1277" @default.
- W2548198516 startingPage "1268" @default.
- W2548198516 abstract "The goal of this paper is to demonstrate a novel approach that combines Empirical Mode Decomposition (EMD) with Notch filtering to remove the electrical stimulation (ES) artifact from surface electromyogram (EMG) data for interpretation of muscle responses during functional electrical stimulation (FES) experiments. FES was applied to the rectus femoris (RF) muscle unilaterally of six able bodied (AB) and one individual with spinal cord injury (SCI). Each trial consisted of three repetitions of ES. We hypothesized that the EMD algorithm provides a suitable platform for decomposing the EMG signal into physically meaningful intrinsic mode functions (IMFs) which can be further used to isolate electrical stimulation (ES) artifact. A basic EMD algorithm was used to decompose the EMG signals collected during FES into IMFs for each repetition separately. IMFs most contaminated by ES were identified based on the standard deviation (SD) of each IMF. Each artifact IMF was Notch filtered to filter ES harmonics and added to remaining IMFs containing pure EMG data to get a version of a filtered EMG signal. Of all such versions of filtered signals generated from each artifact IMF, the one with maximum signal to noise ratio (SNR) was chosen as the final output. The validity of the filtered signal was assessed by quantitative metrics, 1) root mean squared error (RMSE) and signal to noise (SNR) ratio values obtained by comparing a clean EMG and EMD-Notch filtered signal from the combination of simulated ES and clean EMG and, 2) using EMG-force correlation analysis on the data collected from AB individuals. Finally, the potential applicability of this algorithm on a neurologically impaired population was shown by applying the algorithm on EMG data collected from an individual with SCI. EMD combined with Notch filtering successfully extracted the EMG signal buried under ES artifact. Filtering performance was validated by smaller RMSE values and greater SNR post filtering. The amplitude values of the filtered EMG signal were seen to be consistent for three repetitions of ES and there was no significant difference among the repetition for all subjects. For the individual with a SCI the algorithm was shown to successfully isolate the underlying bursts of muscle activations during FES. The data driven nature of EMD algorithm and its ability to act as a filter bank at different bandwidths make this method extremely suitable for dissecting ES induced EMG into IMFs. Such IMFs clearly show the presence of ES artifact at different intensities as well as pure artifact free EMG. This allows the application of Notch filters to IMFs containing ES artifact to further isolate the EMG. As a result of such stepwise approach, the extraction of EMG is achieved with minimal data loss. This study provides a unique approach to dissect and interpret the EMG signal during FES applications." @default.
- W2548198516 created "2016-11-11" @default.
- W2548198516 creator A5002185777 @default.
- W2548198516 creator A5017374191 @default.
- W2548198516 creator A5020580070 @default.
- W2548198516 creator A5021707257 @default.
- W2548198516 creator A5045719177 @default.
- W2548198516 creator A5069832419 @default.
- W2548198516 creator A5073500955 @default.
- W2548198516 creator A5073939538 @default.
- W2548198516 date "2017-08-01" @default.
- W2548198516 modified "2023-10-14" @default.
- W2548198516 title "Application of Empirical Mode Decomposition Combined With Notch Filtering for Interpretation of Surface Electromyograms During Functional Electrical Stimulation" @default.
- W2548198516 cites W150861998 @default.
- W2548198516 cites W1966862016 @default.
- W2548198516 cites W1971961039 @default.
- W2548198516 cites W1978523015 @default.
- W2548198516 cites W1979609413 @default.
- W2548198516 cites W1981084699 @default.
- W2548198516 cites W1982919432 @default.
- W2548198516 cites W1997916972 @default.
- W2548198516 cites W1998065185 @default.
- W2548198516 cites W2006538614 @default.
- W2548198516 cites W2007221293 @default.
- W2548198516 cites W2013367933 @default.
- W2548198516 cites W2014886280 @default.
- W2548198516 cites W2019492418 @default.
- W2548198516 cites W2020130902 @default.
- W2548198516 cites W2021775914 @default.
- W2548198516 cites W2030420269 @default.
- W2548198516 cites W2033282595 @default.
- W2548198516 cites W2048032753 @default.
- W2548198516 cites W2049610202 @default.
- W2548198516 cites W2051029025 @default.
- W2548198516 cites W2071996692 @default.
- W2548198516 cites W2085492612 @default.
- W2548198516 cites W2091710861 @default.
- W2548198516 cites W2093879739 @default.
- W2548198516 cites W2094269666 @default.
- W2548198516 cites W2098395403 @default.
- W2548198516 cites W2114894172 @default.
- W2548198516 cites W2120390927 @default.
- W2548198516 cites W2121155830 @default.
- W2548198516 cites W2135417780 @default.
- W2548198516 cites W2135779253 @default.
- W2548198516 cites W2136471501 @default.
- W2548198516 cites W2147352907 @default.
- W2548198516 cites W2168691138 @default.
- W2548198516 cites W2322894354 @default.
- W2548198516 cites W793305144 @default.
- W2548198516 doi "https://doi.org/10.1109/tnsre.2016.2624763" @default.
- W2548198516 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27834646" @default.
- W2548198516 hasPublicationYear "2017" @default.
- W2548198516 type Work @default.
- W2548198516 sameAs 2548198516 @default.
- W2548198516 citedByCount "25" @default.
- W2548198516 countsByYear W25481985162016 @default.
- W2548198516 countsByYear W25481985162017 @default.
- W2548198516 countsByYear W25481985162019 @default.
- W2548198516 countsByYear W25481985162020 @default.
- W2548198516 countsByYear W25481985162021 @default.
- W2548198516 countsByYear W25481985162022 @default.
- W2548198516 countsByYear W25481985162023 @default.
- W2548198516 crossrefType "journal-article" @default.
- W2548198516 hasAuthorship W2548198516A5002185777 @default.
- W2548198516 hasAuthorship W2548198516A5017374191 @default.
- W2548198516 hasAuthorship W2548198516A5020580070 @default.
- W2548198516 hasAuthorship W2548198516A5021707257 @default.
- W2548198516 hasAuthorship W2548198516A5045719177 @default.
- W2548198516 hasAuthorship W2548198516A5069832419 @default.
- W2548198516 hasAuthorship W2548198516A5073500955 @default.
- W2548198516 hasAuthorship W2548198516A5073939538 @default.
- W2548198516 hasConcept C105795698 @default.
- W2548198516 hasConcept C106131492 @default.
- W2548198516 hasConcept C115961682 @default.
- W2548198516 hasConcept C118552586 @default.
- W2548198516 hasConcept C119599485 @default.
- W2548198516 hasConcept C126322002 @default.
- W2548198516 hasConcept C127413603 @default.
- W2548198516 hasConcept C139945424 @default.
- W2548198516 hasConcept C153180895 @default.
- W2548198516 hasConcept C154945302 @default.
- W2548198516 hasConcept C199360897 @default.
- W2548198516 hasConcept C24998067 @default.
- W2548198516 hasConcept C25570617 @default.
- W2548198516 hasConcept C2777515770 @default.
- W2548198516 hasConcept C2777766275 @default.
- W2548198516 hasConcept C2779010991 @default.
- W2548198516 hasConcept C2779843651 @default.
- W2548198516 hasConcept C28490314 @default.
- W2548198516 hasConcept C31972630 @default.
- W2548198516 hasConcept C33923547 @default.
- W2548198516 hasConcept C41008148 @default.
- W2548198516 hasConcept C71907059 @default.
- W2548198516 hasConcept C71924100 @default.
- W2548198516 hasConcept C99498987 @default.
- W2548198516 hasConceptScore W2548198516C105795698 @default.
- W2548198516 hasConceptScore W2548198516C106131492 @default.