Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548239174> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2548239174 abstract "Effort estimation techniques play a crucial role in planning of the development of web-based applications. Web-based software projects, considered in the present-day scenario are different from conventional object oriented projects, and hence the task of effort estimation is a complex one. It is observed that the literature do not provide a guidance to the analysts to use a particular model as being the most suitable one, for effort estimation of web-based applications. A number of models like IFPUG Function Point Model, NESMA, MARK-II, etc. are being considered for web effort estimation purpose. The efficiency of these models can be improved by employing certain intelligent techniques on them. Keeping in mind the end goal to enhance the efficiency of evaluating the effort required to develop web-based application, certain machine learning techniques such as Stochastic Gradient Boosting and Support Vector Regression Kernels are considered in this study for effort estimation of web-based applications using IFPUG Function Point approach. The ISBSG dataset, Release 12 has been considered in this study for obtaining the IFPUG Function Point data. The performance effort estimation models based on various machine learning techniques is assessed with the help of certain metrics, in order to examine them critically." @default.
- W2548239174 created "2016-11-11" @default.
- W2548239174 creator A5000163721 @default.
- W2548239174 creator A5016802130 @default.
- W2548239174 date "2016-09-01" @default.
- W2548239174 modified "2023-09-30" @default.
- W2548239174 title "Effort estimation of web-based applications using machine learning techniques" @default.
- W2548239174 cites W1528966910 @default.
- W2548239174 cites W1558148672 @default.
- W2548239174 cites W1986033379 @default.
- W2548239174 cites W1990537706 @default.
- W2548239174 cites W2012802231 @default.
- W2548239174 cites W2024284172 @default.
- W2548239174 cites W2039182691 @default.
- W2548239174 cites W2070493638 @default.
- W2548239174 cites W2073751151 @default.
- W2548239174 cites W2102899008 @default.
- W2548239174 cites W2163046038 @default.
- W2548239174 cites W2166573308 @default.
- W2548239174 cites W2168651062 @default.
- W2548239174 cites W3101001893 @default.
- W2548239174 doi "https://doi.org/10.1109/icacci.2016.7732171" @default.
- W2548239174 hasPublicationYear "2016" @default.
- W2548239174 type Work @default.
- W2548239174 sameAs 2548239174 @default.
- W2548239174 citedByCount "3" @default.
- W2548239174 countsByYear W25482391742019 @default.
- W2548239174 countsByYear W25482391742023 @default.
- W2548239174 crossrefType "proceedings-article" @default.
- W2548239174 hasAuthorship W2548239174A5000163721 @default.
- W2548239174 hasAuthorship W2548239174A5016802130 @default.
- W2548239174 hasConcept C119857082 @default.
- W2548239174 hasConcept C12267149 @default.
- W2548239174 hasConcept C124101348 @default.
- W2548239174 hasConcept C127413603 @default.
- W2548239174 hasConcept C14036430 @default.
- W2548239174 hasConcept C151223460 @default.
- W2548239174 hasConcept C154945302 @default.
- W2548239174 hasConcept C169258074 @default.
- W2548239174 hasConcept C199360897 @default.
- W2548239174 hasConcept C201995342 @default.
- W2548239174 hasConcept C2524010 @default.
- W2548239174 hasConcept C2777904410 @default.
- W2548239174 hasConcept C2780451532 @default.
- W2548239174 hasConcept C28719098 @default.
- W2548239174 hasConcept C33923547 @default.
- W2548239174 hasConcept C41008148 @default.
- W2548239174 hasConcept C46686674 @default.
- W2548239174 hasConcept C529173508 @default.
- W2548239174 hasConcept C70153297 @default.
- W2548239174 hasConcept C78458016 @default.
- W2548239174 hasConcept C86803240 @default.
- W2548239174 hasConcept C96250715 @default.
- W2548239174 hasConceptScore W2548239174C119857082 @default.
- W2548239174 hasConceptScore W2548239174C12267149 @default.
- W2548239174 hasConceptScore W2548239174C124101348 @default.
- W2548239174 hasConceptScore W2548239174C127413603 @default.
- W2548239174 hasConceptScore W2548239174C14036430 @default.
- W2548239174 hasConceptScore W2548239174C151223460 @default.
- W2548239174 hasConceptScore W2548239174C154945302 @default.
- W2548239174 hasConceptScore W2548239174C169258074 @default.
- W2548239174 hasConceptScore W2548239174C199360897 @default.
- W2548239174 hasConceptScore W2548239174C201995342 @default.
- W2548239174 hasConceptScore W2548239174C2524010 @default.
- W2548239174 hasConceptScore W2548239174C2777904410 @default.
- W2548239174 hasConceptScore W2548239174C2780451532 @default.
- W2548239174 hasConceptScore W2548239174C28719098 @default.
- W2548239174 hasConceptScore W2548239174C33923547 @default.
- W2548239174 hasConceptScore W2548239174C41008148 @default.
- W2548239174 hasConceptScore W2548239174C46686674 @default.
- W2548239174 hasConceptScore W2548239174C529173508 @default.
- W2548239174 hasConceptScore W2548239174C70153297 @default.
- W2548239174 hasConceptScore W2548239174C78458016 @default.
- W2548239174 hasConceptScore W2548239174C86803240 @default.
- W2548239174 hasConceptScore W2548239174C96250715 @default.
- W2548239174 hasLocation W25482391741 @default.
- W2548239174 hasOpenAccess W2548239174 @default.
- W2548239174 hasPrimaryLocation W25482391741 @default.
- W2548239174 hasRelatedWork W1968832299 @default.
- W2548239174 hasRelatedWork W1979006554 @default.
- W2548239174 hasRelatedWork W1996541855 @default.
- W2548239174 hasRelatedWork W251172239 @default.
- W2548239174 hasRelatedWork W2766514146 @default.
- W2548239174 hasRelatedWork W3195168932 @default.
- W2548239174 hasRelatedWork W4296079469 @default.
- W2548239174 hasRelatedWork W4312821854 @default.
- W2548239174 hasRelatedWork W4313488044 @default.
- W2548239174 hasRelatedWork W4379536929 @default.
- W2548239174 isParatext "false" @default.
- W2548239174 isRetracted "false" @default.
- W2548239174 magId "2548239174" @default.
- W2548239174 workType "article" @default.