Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548608220> ?p ?o ?g. }
- W2548608220 endingPage "23" @default.
- W2548608220 startingPage "1" @default.
- W2548608220 abstract "We introduce a new supervised learning model using a discriminative regression approach. This new model estimates a regression vector to represent the similarity between a test example and training examples while seamlessly integrating the class information in the similarity estimation. This distinguishes our model from usual regression models and locally linear embedding approaches, rendering our method suitable for supervised learning problems in high-dimensional settings. Our model is easily extensible to account for nonlinear relationship and applicable to general data, including both high- and low-dimensional data. The objective function of the model is convex, for which two optimization algorithms are provided. These two optimization approaches induce two scalable solvers that are of mathematically provable, linear time complexity. Experimental results verify the effectiveness of the proposed method on various kinds of data. For example, our method shows comparable performance on low-dimensional data and superior performance on high-dimensional data to several widely used classifiers; also, the linear solvers obtain promising performance on large-scale classification." @default.
- W2548608220 created "2016-11-11" @default.
- W2548608220 creator A5054958308 @default.
- W2548608220 creator A5069518751 @default.
- W2548608220 creator A5082880020 @default.
- W2548608220 date "2016-11-02" @default.
- W2548608220 modified "2023-10-14" @default.
- W2548608220 title "A Supervised Learning Model for High-Dimensional and Large-Scale Data" @default.
- W2548608220 cites W114517082 @default.
- W2548608220 cites W1986931325 @default.
- W2548608220 cites W1998635907 @default.
- W2548608220 cites W2035720976 @default.
- W2548608220 cites W2042749939 @default.
- W2548608220 cites W2043060682 @default.
- W2548608220 cites W2050551672 @default.
- W2548608220 cites W2053186076 @default.
- W2548608220 cites W2053382340 @default.
- W2548608220 cites W2054489011 @default.
- W2548608220 cites W2068861059 @default.
- W2548608220 cites W2073713860 @default.
- W2548608220 cites W2091825929 @default.
- W2548608220 cites W2100556411 @default.
- W2548608220 cites W2102544846 @default.
- W2548608220 cites W2107654046 @default.
- W2548608220 cites W2111574755 @default.
- W2548608220 cites W2112074816 @default.
- W2548608220 cites W2119821739 @default.
- W2548608220 cites W2120725344 @default.
- W2548608220 cites W2121647436 @default.
- W2548608220 cites W2123921160 @default.
- W2548608220 cites W2125993116 @default.
- W2548608220 cites W2127271355 @default.
- W2548608220 cites W2127823872 @default.
- W2548608220 cites W2129812935 @default.
- W2548608220 cites W2131954031 @default.
- W2548608220 cites W2138019504 @default.
- W2548608220 cites W2145962650 @default.
- W2548608220 cites W2153491803 @default.
- W2548608220 cites W2153635508 @default.
- W2548608220 cites W2154209944 @default.
- W2548608220 cites W2157017541 @default.
- W2548608220 cites W2162316550 @default.
- W2548608220 cites W2165966284 @default.
- W2548608220 cites W2167400582 @default.
- W2548608220 cites W2997546679 @default.
- W2548608220 cites W3000180257 @default.
- W2548608220 doi "https://doi.org/10.1145/2972957" @default.
- W2548608220 hasPublicationYear "2016" @default.
- W2548608220 type Work @default.
- W2548608220 sameAs 2548608220 @default.
- W2548608220 citedByCount "14" @default.
- W2548608220 countsByYear W25486082202017 @default.
- W2548608220 countsByYear W25486082202018 @default.
- W2548608220 countsByYear W25486082202020 @default.
- W2548608220 countsByYear W25486082202021 @default.
- W2548608220 crossrefType "journal-article" @default.
- W2548608220 hasAuthorship W2548608220A5054958308 @default.
- W2548608220 hasAuthorship W2548608220A5069518751 @default.
- W2548608220 hasAuthorship W2548608220A5082880020 @default.
- W2548608220 hasConcept C103278499 @default.
- W2548608220 hasConcept C112680207 @default.
- W2548608220 hasConcept C115961682 @default.
- W2548608220 hasConcept C119857082 @default.
- W2548608220 hasConcept C124101348 @default.
- W2548608220 hasConcept C154945302 @default.
- W2548608220 hasConcept C157972887 @default.
- W2548608220 hasConcept C2524010 @default.
- W2548608220 hasConcept C2781067378 @default.
- W2548608220 hasConcept C33923547 @default.
- W2548608220 hasConcept C41008148 @default.
- W2548608220 hasConcept C41608201 @default.
- W2548608220 hasConcept C48044578 @default.
- W2548608220 hasConcept C77088390 @default.
- W2548608220 hasConcept C97931131 @default.
- W2548608220 hasConceptScore W2548608220C103278499 @default.
- W2548608220 hasConceptScore W2548608220C112680207 @default.
- W2548608220 hasConceptScore W2548608220C115961682 @default.
- W2548608220 hasConceptScore W2548608220C119857082 @default.
- W2548608220 hasConceptScore W2548608220C124101348 @default.
- W2548608220 hasConceptScore W2548608220C154945302 @default.
- W2548608220 hasConceptScore W2548608220C157972887 @default.
- W2548608220 hasConceptScore W2548608220C2524010 @default.
- W2548608220 hasConceptScore W2548608220C2781067378 @default.
- W2548608220 hasConceptScore W2548608220C33923547 @default.
- W2548608220 hasConceptScore W2548608220C41008148 @default.
- W2548608220 hasConceptScore W2548608220C41608201 @default.
- W2548608220 hasConceptScore W2548608220C48044578 @default.
- W2548608220 hasConceptScore W2548608220C77088390 @default.
- W2548608220 hasConceptScore W2548608220C97931131 @default.
- W2548608220 hasIssue "2" @default.
- W2548608220 hasLocation W25486082201 @default.
- W2548608220 hasOpenAccess W2548608220 @default.
- W2548608220 hasPrimaryLocation W25486082201 @default.
- W2548608220 hasRelatedWork W2890488121 @default.
- W2548608220 hasRelatedWork W3006943036 @default.
- W2548608220 hasRelatedWork W3012234327 @default.
- W2548608220 hasRelatedWork W3090617741 @default.
- W2548608220 hasRelatedWork W3191046242 @default.