Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548646575> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2548646575 abstract "The exact relationship between knot theory and non-euclidean geometry was a puzzle that survived more than 100 years. The histories of the two subjects were clearly intertwined; Carl Friedrich Gauss was a pioneer and did much to popularize both fields. After Gauss their two histories diverge a little, although taken together the list of luminaries in the two fields reads like a mathematical and scientific “Who’s Who?” of the 19th and early 20th century. Nikolai Lobachevsky, Felix Klein, and Henri Poincare were three of the main developers of non-euclidean geometry while William Thomson (Lord Kelvin), James Clerk Maxwell, and Emil Artin were instrumental in fleshing out knot theory[4]. Although both subjects came to be recognized as following under the umbrella term “topology” and although giants such as Bernhard Riemann and Max Dehn [4, 7] worked in both areas the two fields remained disjoint until they were finally reunited in the 1970’s. In 1973 Robert Riley, then a graduate student at the University of Southampton in England, succeeded in showing that the figure-eight knot complement had a hyperbolic structure [4]. He did this by first showing that since fundamental group of the figure-eight knot complement is isomorphic to a subgroup of PSL2C, and then using the theory of Haken (of four color theorem fame) manifolds to show that the figure-eight knot complement is homeomorphic to H mod a discrete group of isometries [6]. Riley later showed that several other knot complements admit a hyperbolic structure and conjectured that indeed all knot complements except for torus and satellite knots admit a hyperbolic structure. It seems to often be the case in mathematics that the best way to make progress on a subject is to interest someone else in it. In 1977 Riley did exactly this when he met William Thurston at Princeton and motivated him to start investigating hyperbolic structures on knot complements [4]. Thurston soon came up with a more explicit way of showing that the figure-eight knot complement is hyperbolic. It is Thurston’s construction, which starts by gluing two tetrahedra together, that we will follow in Section 2. Relying in part on his experiences with knot complements [9] in 1978 Thurston completed his “hyperbolization theorem” or “geometrization theorem” (note that this is is a special case of the “geometrization" @default.
- W2548646575 created "2016-11-11" @default.
- W2548646575 creator A5079883630 @default.
- W2548646575 date "2012-01-01" @default.
- W2548646575 modified "2023-09-24" @default.
- W2548646575 title "Hyperbolic Geometry on the Figure-Eight Knot Complement" @default.
- W2548646575 cites W1494599013 @default.
- W2548646575 cites W1993550984 @default.
- W2548646575 cites W2127020756 @default.
- W2548646575 cites W3015754474 @default.
- W2548646575 cites W634598231 @default.
- W2548646575 hasPublicationYear "2012" @default.
- W2548646575 type Work @default.
- W2548646575 sameAs 2548646575 @default.
- W2548646575 citedByCount "0" @default.
- W2548646575 crossrefType "journal-article" @default.
- W2548646575 hasAuthorship W2548646575A5079883630 @default.
- W2548646575 hasConcept C114614502 @default.
- W2548646575 hasConcept C121332964 @default.
- W2548646575 hasConcept C127413603 @default.
- W2548646575 hasConcept C129782007 @default.
- W2548646575 hasConcept C143330242 @default.
- W2548646575 hasConcept C161794534 @default.
- W2548646575 hasConcept C19794929 @default.
- W2548646575 hasConcept C206352148 @default.
- W2548646575 hasConcept C2524010 @default.
- W2548646575 hasConcept C2779863119 @default.
- W2548646575 hasConcept C33923547 @default.
- W2548646575 hasConcept C36794415 @default.
- W2548646575 hasConcept C42360764 @default.
- W2548646575 hasConcept C62520636 @default.
- W2548646575 hasConcept C68363185 @default.
- W2548646575 hasConcept C78231820 @default.
- W2548646575 hasConceptScore W2548646575C114614502 @default.
- W2548646575 hasConceptScore W2548646575C121332964 @default.
- W2548646575 hasConceptScore W2548646575C127413603 @default.
- W2548646575 hasConceptScore W2548646575C129782007 @default.
- W2548646575 hasConceptScore W2548646575C143330242 @default.
- W2548646575 hasConceptScore W2548646575C161794534 @default.
- W2548646575 hasConceptScore W2548646575C19794929 @default.
- W2548646575 hasConceptScore W2548646575C206352148 @default.
- W2548646575 hasConceptScore W2548646575C2524010 @default.
- W2548646575 hasConceptScore W2548646575C2779863119 @default.
- W2548646575 hasConceptScore W2548646575C33923547 @default.
- W2548646575 hasConceptScore W2548646575C36794415 @default.
- W2548646575 hasConceptScore W2548646575C42360764 @default.
- W2548646575 hasConceptScore W2548646575C62520636 @default.
- W2548646575 hasConceptScore W2548646575C68363185 @default.
- W2548646575 hasConceptScore W2548646575C78231820 @default.
- W2548646575 hasLocation W25486465751 @default.
- W2548646575 hasOpenAccess W2548646575 @default.
- W2548646575 hasPrimaryLocation W25486465751 @default.
- W2548646575 hasRelatedWork W111453034 @default.
- W2548646575 hasRelatedWork W1497901889 @default.
- W2548646575 hasRelatedWork W1568953172 @default.
- W2548646575 hasRelatedWork W2078290684 @default.
- W2548646575 hasRelatedWork W2165368617 @default.
- W2548646575 hasRelatedWork W2187500317 @default.
- W2548646575 hasRelatedWork W2317856429 @default.
- W2548646575 hasRelatedWork W2326461267 @default.
- W2548646575 hasRelatedWork W2493477830 @default.
- W2548646575 hasRelatedWork W2562532020 @default.
- W2548646575 hasRelatedWork W2598879672 @default.
- W2548646575 hasRelatedWork W2784900794 @default.
- W2548646575 hasRelatedWork W2887088173 @default.
- W2548646575 hasRelatedWork W2964208257 @default.
- W2548646575 hasRelatedWork W3136698047 @default.
- W2548646575 hasRelatedWork W32724069 @default.
- W2548646575 hasRelatedWork W351384713 @default.
- W2548646575 hasRelatedWork W39584005 @default.
- W2548646575 hasRelatedWork W962007514 @default.
- W2548646575 hasRelatedWork W986058630 @default.
- W2548646575 isParatext "false" @default.
- W2548646575 isRetracted "false" @default.
- W2548646575 magId "2548646575" @default.
- W2548646575 workType "article" @default.