Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548651691> ?p ?o ?g. }
- W2548651691 abstract "Abstract Flexible definition and automatic extraction of generic features on 3D shapes is important for feature-centric geometric analysis, however, existing techniques fall short in measuring and locating semantic features from users' psychological standpoints. This paper makes an initial attempt to propose a learning based generic modeling approach for user-central definition and automatic extraction of features on arbitrary shapes. Instead of purely resorting to certain local geometric extremes to simply formulate feature metrics, it enables the users to arbitrarily specify application-specific features on training shapes, so that similar features can be automatically extracted from other same-category shapes with isometric or near-isometric deformations. Our key originality is built upon an observation: the geodesic distance from one point to desired feature point on testing shape should be similar to the points on training shapes. To this end, we propose a novel regression model to bridge the massive random-sampled local properties and the desired feature points via incorporating their corresponding geodesic distances into the powerful random forest framework. On that basis, an effective voting strategy is proposed to estimate the locations of the user-specified features on new shapes. Our extensive experiments and comprehensive evaluations have demonstrated many attractive advantages of our method, including being fully-automatic, robust to noise and partial holes, invariant under isometric and near-isometric deformation, and also scale-invariant, which can well facilitate to many downstream geometry-processing applications such as semantic mesh segmentation, mesh skeleton extraction, etc." @default.
- W2548651691 created "2016-11-11" @default.
- W2548651691 creator A5035153076 @default.
- W2548651691 creator A5050309878 @default.
- W2548651691 creator A5089487980 @default.
- W2548651691 creator A5091408797 @default.
- W2548651691 date "2016-12-01" @default.
- W2548651691 modified "2023-10-17" @default.
- W2548651691 title "Automatic extraction of generic focal features on 3D shapes via random forest regression analysis of geodesics-in-heat" @default.
- W2548651691 cites W137456267 @default.
- W2548651691 cites W1482914963 @default.
- W2548651691 cites W1564871316 @default.
- W2548651691 cites W1568207135 @default.
- W2548651691 cites W1570448133 @default.
- W2548651691 cites W1573412753 @default.
- W2548651691 cites W1579684593 @default.
- W2548651691 cites W1969076082 @default.
- W2548651691 cites W1974744233 @default.
- W2548651691 cites W1977257583 @default.
- W2548651691 cites W1981784948 @default.
- W2548651691 cites W1991033796 @default.
- W2548651691 cites W1994232247 @default.
- W2548651691 cites W2007206727 @default.
- W2548651691 cites W2010209192 @default.
- W2548651691 cites W2011697391 @default.
- W2548651691 cites W2042164058 @default.
- W2548651691 cites W2047161559 @default.
- W2548651691 cites W2057018318 @default.
- W2548651691 cites W2084548435 @default.
- W2548651691 cites W2086282744 @default.
- W2548651691 cites W2100657858 @default.
- W2548651691 cites W2105106232 @default.
- W2548651691 cites W2111957157 @default.
- W2548651691 cites W2117183049 @default.
- W2548651691 cites W2121717885 @default.
- W2548651691 cites W2122076394 @default.
- W2548651691 cites W2123487031 @default.
- W2548651691 cites W2130470622 @default.
- W2548651691 cites W2132303710 @default.
- W2548651691 cites W2133098875 @default.
- W2548651691 cites W2134448913 @default.
- W2548651691 cites W2140037310 @default.
- W2548651691 cites W2148596671 @default.
- W2548651691 cites W2151103935 @default.
- W2548651691 cites W2155840984 @default.
- W2548651691 cites W2157218815 @default.
- W2548651691 cites W2161253909 @default.
- W2548651691 cites W2294879381 @default.
- W2548651691 cites W2911964244 @default.
- W2548651691 cites W3125178117 @default.
- W2548651691 doi "https://doi.org/10.1016/j.cagd.2016.10.003" @default.
- W2548651691 hasPublicationYear "2016" @default.
- W2548651691 type Work @default.
- W2548651691 sameAs 2548651691 @default.
- W2548651691 citedByCount "3" @default.
- W2548651691 countsByYear W25486516912020 @default.
- W2548651691 countsByYear W25486516912022 @default.
- W2548651691 crossrefType "journal-article" @default.
- W2548651691 hasAuthorship W2548651691A5035153076 @default.
- W2548651691 hasAuthorship W2548651691A5050309878 @default.
- W2548651691 hasAuthorship W2548651691A5089487980 @default.
- W2548651691 hasAuthorship W2548651691A5091408797 @default.
- W2548651691 hasConcept C112604564 @default.
- W2548651691 hasConcept C11413529 @default.
- W2548651691 hasConcept C121684516 @default.
- W2548651691 hasConcept C129641003 @default.
- W2548651691 hasConcept C138885662 @default.
- W2548651691 hasConcept C153180895 @default.
- W2548651691 hasConcept C154945302 @default.
- W2548651691 hasConcept C165818556 @default.
- W2548651691 hasConcept C169258074 @default.
- W2548651691 hasConcept C190470478 @default.
- W2548651691 hasConcept C199360897 @default.
- W2548651691 hasConcept C2524010 @default.
- W2548651691 hasConcept C2776401178 @default.
- W2548651691 hasConcept C2779521785 @default.
- W2548651691 hasConcept C31487907 @default.
- W2548651691 hasConcept C33923547 @default.
- W2548651691 hasConcept C37914503 @default.
- W2548651691 hasConcept C41008148 @default.
- W2548651691 hasConcept C41895202 @default.
- W2548651691 hasConcept C45089102 @default.
- W2548651691 hasConcept C52622490 @default.
- W2548651691 hasConcept C89600930 @default.
- W2548651691 hasConcept C97686452 @default.
- W2548651691 hasConceptScore W2548651691C112604564 @default.
- W2548651691 hasConceptScore W2548651691C11413529 @default.
- W2548651691 hasConceptScore W2548651691C121684516 @default.
- W2548651691 hasConceptScore W2548651691C129641003 @default.
- W2548651691 hasConceptScore W2548651691C138885662 @default.
- W2548651691 hasConceptScore W2548651691C153180895 @default.
- W2548651691 hasConceptScore W2548651691C154945302 @default.
- W2548651691 hasConceptScore W2548651691C165818556 @default.
- W2548651691 hasConceptScore W2548651691C169258074 @default.
- W2548651691 hasConceptScore W2548651691C190470478 @default.
- W2548651691 hasConceptScore W2548651691C199360897 @default.
- W2548651691 hasConceptScore W2548651691C2524010 @default.
- W2548651691 hasConceptScore W2548651691C2776401178 @default.
- W2548651691 hasConceptScore W2548651691C2779521785 @default.
- W2548651691 hasConceptScore W2548651691C31487907 @default.