Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548652796> ?p ?o ?g. }
- W2548652796 endingPage "26749" @default.
- W2548652796 startingPage "26739" @default.
- W2548652796 abstract "Negative cooperativity in enzyme reactions, in which the first event makes subsequent events less favorable, is sometimes well understood at the molecular level, but its physiological role has often been obscure. Negative cooperativity occurs in human glutathione transferase (GST) GSTP1-1 when it binds and neutralizes a toxic nitric oxide adduct, the dinitrosyl-diglutathionyl iron complex (DNDGIC). However, the generality of this behavior across the divergent GST family and its evolutionary significance were unclear. To investigate, we studied 16 different GSTs, revealing that negative cooperativity is present only in more recently evolved GSTs, indicating evolutionary drift in this direction. In some variants, Hill coefficients were close to 0.5, the highest degree of negative cooperativity commonly observed (although smaller values of nH are theoretically possible). As DNDGIC is also a strong inhibitor of GSTs, we suggest negative cooperativity might have evolved to maintain a residual conjugating activity of GST against toxins even in the presence of high DNDGIC concentrations. Interestingly, two human isoenzymes that play a special protective role, safeguarding DNA from DNDGIC, display a classical half-of-the-sites interaction. Analysis of GST structures identified elements that could play a role in negative cooperativity in GSTs. Beside the well known lock-and-key and clasp motifs, other alternative structural interactions between subunits may be proposed for a few GSTs. Taken together, our findings suggest the evolution of self-preservation of enzyme function as a novel facility emerging from negative cooperativity. Negative cooperativity in enzyme reactions, in which the first event makes subsequent events less favorable, is sometimes well understood at the molecular level, but its physiological role has often been obscure. Negative cooperativity occurs in human glutathione transferase (GST) GSTP1-1 when it binds and neutralizes a toxic nitric oxide adduct, the dinitrosyl-diglutathionyl iron complex (DNDGIC). However, the generality of this behavior across the divergent GST family and its evolutionary significance were unclear. To investigate, we studied 16 different GSTs, revealing that negative cooperativity is present only in more recently evolved GSTs, indicating evolutionary drift in this direction. In some variants, Hill coefficients were close to 0.5, the highest degree of negative cooperativity commonly observed (although smaller values of nH are theoretically possible). As DNDGIC is also a strong inhibitor of GSTs, we suggest negative cooperativity might have evolved to maintain a residual conjugating activity of GST against toxins even in the presence of high DNDGIC concentrations. Interestingly, two human isoenzymes that play a special protective role, safeguarding DNA from DNDGIC, display a classical half-of-the-sites interaction. Analysis of GST structures identified elements that could play a role in negative cooperativity in GSTs. Beside the well known lock-and-key and clasp motifs, other alternative structural interactions between subunits may be proposed for a few GSTs. Taken together, our findings suggest the evolution of self-preservation of enzyme function as a novel facility emerging from negative cooperativity." @default.
- W2548652796 created "2016-11-11" @default.
- W2548652796 creator A5000877030 @default.
- W2548652796 creator A5009225717 @default.
- W2548652796 creator A5021101856 @default.
- W2548652796 creator A5042831438 @default.
- W2548652796 creator A5048917582 @default.
- W2548652796 creator A5060715728 @default.
- W2548652796 creator A5075406326 @default.
- W2548652796 creator A5080145082 @default.
- W2548652796 date "2016-12-01" @default.
- W2548652796 modified "2023-09-30" @default.
- W2548652796 title "Evolution of Negative Cooperativity in Glutathione Transferase Enabled Preservation of Enzyme Function" @default.
- W2548652796 cites W1531964167 @default.
- W2548652796 cites W1584839731 @default.
- W2548652796 cites W1588950136 @default.
- W2548652796 cites W1590571827 @default.
- W2548652796 cites W1593942754 @default.
- W2548652796 cites W1699618747 @default.
- W2548652796 cites W172254742 @default.
- W2548652796 cites W1868880553 @default.
- W2548652796 cites W1965064962 @default.
- W2548652796 cites W1966530947 @default.
- W2548652796 cites W1973910453 @default.
- W2548652796 cites W1975424840 @default.
- W2548652796 cites W1975921054 @default.
- W2548652796 cites W1977637450 @default.
- W2548652796 cites W1978790337 @default.
- W2548652796 cites W1979702489 @default.
- W2548652796 cites W1980535086 @default.
- W2548652796 cites W1981367433 @default.
- W2548652796 cites W1984443050 @default.
- W2548652796 cites W1984883228 @default.
- W2548652796 cites W1986552258 @default.
- W2548652796 cites W1993214140 @default.
- W2548652796 cites W1998093640 @default.
- W2548652796 cites W2002695473 @default.
- W2548652796 cites W2009652285 @default.
- W2548652796 cites W2010338582 @default.
- W2548652796 cites W2013115509 @default.
- W2548652796 cites W2013534907 @default.
- W2548652796 cites W2013830682 @default.
- W2548652796 cites W2018476302 @default.
- W2548652796 cites W2019948885 @default.
- W2548652796 cites W2021059776 @default.
- W2548652796 cites W2026857688 @default.
- W2548652796 cites W2026887458 @default.
- W2548652796 cites W2031972213 @default.
- W2548652796 cites W2039204060 @default.
- W2548652796 cites W2046503138 @default.
- W2548652796 cites W2061529389 @default.
- W2548652796 cites W2074461690 @default.
- W2548652796 cites W2074586823 @default.
- W2548652796 cites W2078952222 @default.
- W2548652796 cites W2079178286 @default.
- W2548652796 cites W2080901247 @default.
- W2548652796 cites W2082279195 @default.
- W2548652796 cites W2093217389 @default.
- W2548652796 cites W2093557227 @default.
- W2548652796 cites W2113048033 @default.
- W2548652796 cites W2114169043 @default.
- W2548652796 cites W2116832185 @default.
- W2548652796 cites W2117131487 @default.
- W2548652796 cites W2117471008 @default.
- W2548652796 cites W2129590676 @default.
- W2548652796 cites W2132629607 @default.
- W2548652796 cites W2415639011 @default.
- W2548652796 cites W4238581030 @default.
- W2548652796 cites W2002871517 @default.
- W2548652796 doi "https://doi.org/10.1074/jbc.m116.749507" @default.
- W2548652796 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5207182" @default.
- W2548652796 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27815499" @default.
- W2548652796 hasPublicationYear "2016" @default.
- W2548652796 type Work @default.
- W2548652796 sameAs 2548652796 @default.
- W2548652796 citedByCount "20" @default.
- W2548652796 countsByYear W25486527962018 @default.
- W2548652796 countsByYear W25486527962019 @default.
- W2548652796 countsByYear W25486527962020 @default.
- W2548652796 countsByYear W25486527962021 @default.
- W2548652796 countsByYear W25486527962022 @default.
- W2548652796 countsByYear W25486527962023 @default.
- W2548652796 crossrefType "journal-article" @default.
- W2548652796 hasAuthorship W2548652796A5000877030 @default.
- W2548652796 hasAuthorship W2548652796A5009225717 @default.
- W2548652796 hasAuthorship W2548652796A5021101856 @default.
- W2548652796 hasAuthorship W2548652796A5042831438 @default.
- W2548652796 hasAuthorship W2548652796A5048917582 @default.
- W2548652796 hasAuthorship W2548652796A5060715728 @default.
- W2548652796 hasAuthorship W2548652796A5075406326 @default.
- W2548652796 hasAuthorship W2548652796A5080145082 @default.
- W2548652796 hasBestOaLocation W25486527961 @default.
- W2548652796 hasConcept C119795356 @default.
- W2548652796 hasConcept C12554922 @default.
- W2548652796 hasConcept C14036430 @default.
- W2548652796 hasConcept C166014724 @default.
- W2548652796 hasConcept C181199279 @default.
- W2548652796 hasConcept C185592680 @default.