Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548679986> ?p ?o ?g. }
- W2548679986 endingPage "7544" @default.
- W2548679986 startingPage "7536" @default.
- W2548679986 abstract "Semiconductor nanowires (SCNWs) provide a unique tunability of electro-optical property than their bulk counterparts (e.g., polycrystalline thin films) due to size effects. Nanoscale straining of SCNWs is desirable to enable new ways to tune the properties of SCNWs, such as electronic transport, band structure, and quantum properties. However, there are two bottlenecks to prevent the real applications of straining engineering of SCNWs: strainability and scalability. Unlike metallic nanowires which are highly flexible and mechanically robust for parallel shaping, SCNWs are brittle in nature and could easily break at strains slightly higher than their elastic limits. In addition, the ability to generate nanoshaping in large scale is limited with the current technologies, such as the straining of nanowires with sophisticated manipulators, nanocombing NWs with U-shaped trenches, or buckling NWs with prestretched elastic substrates, which are incompatible with semiconductor technology. Here we present a top-down fabrication methodology to achieve large scale nanoshaping of SCNWs in parallel with tunable elastic strains. This method utilizes nanosecond pulsed laser to generate shock pressure and conformably deform the SCNWs onto 3D-nanostructured silicon substrates in a scalable and ultrafast manner. A polymer dielectric nanolayer is integrated in the process for cushioning the high strain-rate deformation, suppressing the generation of dislocations or cracks, and providing self-preserving mechanism for elastic strain storage in SCNWs. The elastic strain limits have been studied as functions of laser intensity, dimensions of nanowires, and the geometry of nanomolds. As a result of 3D straining, the inhomogeneous elastic strains in GeNWs result in notable Raman peak shifts and broadening, which bring more tunability of the electrical–optical property in SCNWs than traditional strain engineering. We have achieved the first 3D nanostraining enhanced germanium field-effect transistors from GeNWs. Due to laser shock induced straining effect, a more than 2-fold hole mobility enhancement and a 120% transconductance enhancement are obtained from the fabricated back-gated field effect transistors. The presented nanoshaping of SCNWs provide new ways to manipulate nanomaterials with tunable electrical–optical properties and open up many opportunities for nanoelectronics, the nanoelectrical–mechanical system, and quantum devices." @default.
- W2548679986 created "2016-11-11" @default.
- W2548679986 creator A5006347592 @default.
- W2548679986 creator A5010509421 @default.
- W2548679986 creator A5011120346 @default.
- W2548679986 creator A5011849320 @default.
- W2548679986 creator A5019102213 @default.
- W2548679986 creator A5023980484 @default.
- W2548679986 creator A5051321761 @default.
- W2548679986 creator A5064167213 @default.
- W2548679986 creator A5064803348 @default.
- W2548679986 creator A5085462851 @default.
- W2548679986 date "2016-11-09" @default.
- W2548679986 modified "2023-10-02" @default.
- W2548679986 title "Parallel Nanoshaping of Brittle Semiconductor Nanowires for Strained Electronics" @default.
- W2548679986 cites W1718677086 @default.
- W2548679986 cites W1972751731 @default.
- W2548679986 cites W1976597701 @default.
- W2548679986 cites W1988296902 @default.
- W2548679986 cites W1989192075 @default.
- W2548679986 cites W1990686086 @default.
- W2548679986 cites W1995117531 @default.
- W2548679986 cites W1995820353 @default.
- W2548679986 cites W2006134182 @default.
- W2548679986 cites W2007104515 @default.
- W2548679986 cites W2008818033 @default.
- W2548679986 cites W2014174828 @default.
- W2548679986 cites W2017562930 @default.
- W2548679986 cites W2024248588 @default.
- W2548679986 cites W2038863138 @default.
- W2548679986 cites W2041802248 @default.
- W2548679986 cites W2045300948 @default.
- W2548679986 cites W2046965185 @default.
- W2548679986 cites W2058639886 @default.
- W2548679986 cites W2066131124 @default.
- W2548679986 cites W2066480717 @default.
- W2548679986 cites W2068079317 @default.
- W2548679986 cites W2087467580 @default.
- W2548679986 cites W2089810589 @default.
- W2548679986 cites W2093130747 @default.
- W2548679986 cites W2103213945 @default.
- W2548679986 cites W2103444856 @default.
- W2548679986 cites W2103918911 @default.
- W2548679986 cites W2107817533 @default.
- W2548679986 cites W2120537303 @default.
- W2548679986 cites W2132201318 @default.
- W2548679986 cites W2134874682 @default.
- W2548679986 cites W2146538427 @default.
- W2548679986 cites W2150040215 @default.
- W2548679986 cites W2154707832 @default.
- W2548679986 cites W2159515601 @default.
- W2548679986 cites W2168194315 @default.
- W2548679986 cites W2178344769 @default.
- W2548679986 cites W2310323710 @default.
- W2548679986 cites W2316452460 @default.
- W2548679986 cites W2325974876 @default.
- W2548679986 cites W2328071820 @default.
- W2548679986 cites W2516292970 @default.
- W2548679986 cites W2517766607 @default.
- W2548679986 doi "https://doi.org/10.1021/acs.nanolett.6b03366" @default.
- W2548679986 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27960457" @default.
- W2548679986 hasPublicationYear "2016" @default.
- W2548679986 type Work @default.
- W2548679986 sameAs 2548679986 @default.
- W2548679986 citedByCount "20" @default.
- W2548679986 countsByYear W25486799862017 @default.
- W2548679986 countsByYear W25486799862018 @default.
- W2548679986 countsByYear W25486799862019 @default.
- W2548679986 countsByYear W25486799862020 @default.
- W2548679986 countsByYear W25486799862021 @default.
- W2548679986 countsByYear W25486799862022 @default.
- W2548679986 countsByYear W25486799862023 @default.
- W2548679986 crossrefType "journal-article" @default.
- W2548679986 hasAuthorship W2548679986A5006347592 @default.
- W2548679986 hasAuthorship W2548679986A5010509421 @default.
- W2548679986 hasAuthorship W2548679986A5011120346 @default.
- W2548679986 hasAuthorship W2548679986A5011849320 @default.
- W2548679986 hasAuthorship W2548679986A5019102213 @default.
- W2548679986 hasAuthorship W2548679986A5023980484 @default.
- W2548679986 hasAuthorship W2548679986A5051321761 @default.
- W2548679986 hasAuthorship W2548679986A5064167213 @default.
- W2548679986 hasAuthorship W2548679986A5064803348 @default.
- W2548679986 hasAuthorship W2548679986A5085462851 @default.
- W2548679986 hasConcept C108225325 @default.
- W2548679986 hasConcept C133386390 @default.
- W2548679986 hasConcept C136478896 @default.
- W2548679986 hasConcept C138331895 @default.
- W2548679986 hasConcept C147789679 @default.
- W2548679986 hasConcept C159985019 @default.
- W2548679986 hasConcept C171250308 @default.
- W2548679986 hasConcept C185592680 @default.
- W2548679986 hasConcept C192562407 @default.
- W2548679986 hasConcept C2781196758 @default.
- W2548679986 hasConcept C49040817 @default.
- W2548679986 hasConcept C544956773 @default.
- W2548679986 hasConcept C74214498 @default.
- W2548679986 hasConcept C80487327 @default.
- W2548679986 hasConceptScore W2548679986C108225325 @default.