Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548707967> ?p ?o ?g. }
- W2548707967 abstract "Through the study of pigmented skin lesions risk factors, the appearance of malignant melanoma turns the anomalous occurrence of these lesions to annoying sign. The difficulty of differentiation between malignant melanoma and melanocytic naive is the error-bone problem that usually faces the physicians in diagnosis. To think through the hard mission of pigmented skin lesions diagnosis different clinical diagnosis algorithms were proposed such as pattern analysis, ABCD rule of dermoscopy, Menzies method, and 7-points checklist. Computerized monitoring of these algorithms improves the diagnosis of melanoma compared to simple naked-eye of physician during examination. Toward the serious step of melanoma early detection, aiming to reduce melanoma mortality rate, several computerized studies and procedures were proposed. Through this research different approaches with a huge number of features were discussed to point out the best approach or methodology could be followed to accurately diagnose the pigmented skin lesion. This paper proposes automated system for diagnosis of melanoma to provide quantitative and objective evaluation of skin lesion as opposed to visual assessment, which is subjective in nature. Two different data sets were utilized to reduce the effect of qualitative interpretation problem upon accurate diagnosis. Set of clinical images that are acquired from a standard camera while the other set is acquired from a special dermoscopic camera and so named dermoscopic images. System contribution appears in new, complete and different approaches presented for the aim of pigmented skin lesion diagnosis. These approaches result from using large conclusive set of features fed to different classifiers. The three main types of different features extracted from the region of interest are geometric, chromatic, and texture features. Three statistical methods were proposed to select the most significant features that will cause a valuable effect in diagnosis; Fisher score method, t-test, and F-test. The selected features of high-ranking score based on the statistical methods are used for the diagnosis of the two lesion groups using Artificial Neural Network (ANN), K-Nearest Neighbor (KNN) and Support Vector Machine (SVM) as three different classifiers proposed. The overall System performance was then measured in regards to Specificity, Sensitivity and Accuracy. According to the different approaches that will be mentioned later the best result was showen by the ANN designed with the feature selected according to fisher score method enables a diagnostic accuracy of 96.25% and 97% for dermoscopic and clinical images respectively." @default.
- W2548707967 created "2016-11-11" @default.
- W2548707967 creator A5010270301 @default.
- W2548707967 creator A5052534198 @default.
- W2548707967 creator A5059006630 @default.
- W2548707967 date "2016-01-01" @default.
- W2548707967 modified "2023-09-27" @default.
- W2548707967 title "Automated Imaging System for Pigmented Skin Lesion Diagnosis" @default.
- W2548707967 cites W107968503 @default.
- W2548707967 cites W1480376833 @default.
- W2548707967 cites W1490760466 @default.
- W2548707967 cites W1491589646 @default.
- W2548707967 cites W1516295016 @default.
- W2548707967 cites W1533162639 @default.
- W2548707967 cites W1545215082 @default.
- W2548707967 cites W1601740268 @default.
- W2548707967 cites W1669383326 @default.
- W2548707967 cites W1894664571 @default.
- W2548707967 cites W1964357740 @default.
- W2548707967 cites W1979332562 @default.
- W2548707967 cites W1998147375 @default.
- W2548707967 cites W2003834444 @default.
- W2548707967 cites W2041999611 @default.
- W2548707967 cites W2044465660 @default.
- W2548707967 cites W2048523260 @default.
- W2548707967 cites W2055522016 @default.
- W2548707967 cites W2059432853 @default.
- W2548707967 cites W2075433722 @default.
- W2548707967 cites W2077307030 @default.
- W2548707967 cites W2078187356 @default.
- W2548707967 cites W2094756377 @default.
- W2548707967 cites W2094943739 @default.
- W2548707967 cites W2103179281 @default.
- W2548707967 cites W2109363337 @default.
- W2548707967 cites W2116411770 @default.
- W2548707967 cites W2120515362 @default.
- W2548707967 cites W2120984789 @default.
- W2548707967 cites W2131264832 @default.
- W2548707967 cites W2133059825 @default.
- W2548707967 cites W2152039796 @default.
- W2548707967 cites W2152188843 @default.
- W2548707967 cites W2152671973 @default.
- W2548707967 cites W2154433919 @default.
- W2548707967 cites W2156909104 @default.
- W2548707967 cites W2184855574 @default.
- W2548707967 cites W2240829341 @default.
- W2548707967 cites W2505399031 @default.
- W2548707967 cites W2540105467 @default.
- W2548707967 cites W2799061466 @default.
- W2548707967 cites W2799404037 @default.
- W2548707967 cites W3023786531 @default.
- W2548707967 cites W3143534441 @default.
- W2548707967 cites W3210557826 @default.
- W2548707967 doi "https://doi.org/10.14569/ijacsa.2016.071033" @default.
- W2548707967 hasPublicationYear "2016" @default.
- W2548707967 type Work @default.
- W2548707967 sameAs 2548707967 @default.
- W2548707967 citedByCount "6" @default.
- W2548707967 countsByYear W25487079672019 @default.
- W2548707967 countsByYear W25487079672020 @default.
- W2548707967 countsByYear W25487079672022 @default.
- W2548707967 crossrefType "journal-article" @default.
- W2548707967 hasAuthorship W2548707967A5010270301 @default.
- W2548707967 hasAuthorship W2548707967A5052534198 @default.
- W2548707967 hasAuthorship W2548707967A5059006630 @default.
- W2548707967 hasBestOaLocation W25487079671 @default.
- W2548707967 hasConcept C126838900 @default.
- W2548707967 hasConcept C142724271 @default.
- W2548707967 hasConcept C153180895 @default.
- W2548707967 hasConcept C154945302 @default.
- W2548707967 hasConcept C15744967 @default.
- W2548707967 hasConcept C16005928 @default.
- W2548707967 hasConcept C177264268 @default.
- W2548707967 hasConcept C180747234 @default.
- W2548707967 hasConcept C199360897 @default.
- W2548707967 hasConcept C2777658100 @default.
- W2548707967 hasConcept C2779356329 @default.
- W2548707967 hasConcept C2781156865 @default.
- W2548707967 hasConcept C2988168687 @default.
- W2548707967 hasConcept C2991914496 @default.
- W2548707967 hasConcept C41008148 @default.
- W2548707967 hasConcept C502942594 @default.
- W2548707967 hasConcept C534262118 @default.
- W2548707967 hasConcept C71924100 @default.
- W2548707967 hasConceptScore W2548707967C126838900 @default.
- W2548707967 hasConceptScore W2548707967C142724271 @default.
- W2548707967 hasConceptScore W2548707967C153180895 @default.
- W2548707967 hasConceptScore W2548707967C154945302 @default.
- W2548707967 hasConceptScore W2548707967C15744967 @default.
- W2548707967 hasConceptScore W2548707967C16005928 @default.
- W2548707967 hasConceptScore W2548707967C177264268 @default.
- W2548707967 hasConceptScore W2548707967C180747234 @default.
- W2548707967 hasConceptScore W2548707967C199360897 @default.
- W2548707967 hasConceptScore W2548707967C2777658100 @default.
- W2548707967 hasConceptScore W2548707967C2779356329 @default.
- W2548707967 hasConceptScore W2548707967C2781156865 @default.
- W2548707967 hasConceptScore W2548707967C2988168687 @default.
- W2548707967 hasConceptScore W2548707967C2991914496 @default.
- W2548707967 hasConceptScore W2548707967C41008148 @default.
- W2548707967 hasConceptScore W2548707967C502942594 @default.