Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548748044> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2548748044 endingPage "1871" @default.
- W2548748044 startingPage "1867" @default.
- W2548748044 abstract "We introduce an online anomaly detection algorithm that processes data in a sequential manner. At each time, the algorithm makes a new observation, produces a decision, and then adaptively updates all its parameters to enhance its performance. The algorithm mainly works in an unsupervised manner since in most real-life applications labeling the data is costly. Even so, whenever there is a feedback, the algorithm uses it for better adaptation. The algorithm has two stages. In the first stage, it constructs a score function similar to a probability density function to model the underlying nominal distribution (if there is one) or to fit to the observed data. In the second state, this score function is used to evaluate the newly observed data to provide the final decision. The decision is given after the well-known thresholding. We construct the score using a highly versatile and completely adaptive nested decision tree. Nested soft decision trees are used to partition the observation space in a hierarchical manner. We adaptively optimize every component of the tree, i.e., decision regions and probabilistic models at each node as well as the overall structure, based on the sequential performance. This extensive in-time adaptation provides strong modeling capabilities; however, it may cause overfitting. To mitigate the overfitting issues, we first use the intermediate nodes of the tree to produce several subtrees, which constitute all the models from coarser to full extend, and then adaptively combine them. By using a real-life dataset, we show that our algorithm significantly outperforms the state of the art." @default.
- W2548748044 created "2016-11-11" @default.
- W2548748044 creator A5046978392 @default.
- W2548748044 creator A5056152995 @default.
- W2548748044 creator A5064912897 @default.
- W2548748044 creator A5072343019 @default.
- W2548748044 creator A5089040739 @default.
- W2548748044 date "2016-12-01" @default.
- W2548748044 modified "2023-09-27" @default.
- W2548748044 title "Online Anomaly Detection With Nested Trees" @default.
- W2548748044 cites W1506313179 @default.
- W2548748044 cites W1970088130 @default.
- W2548748044 cites W1978071126 @default.
- W2548748044 cites W1980486587 @default.
- W2548748044 cites W2050969847 @default.
- W2548748044 cites W2076534885 @default.
- W2548748044 cites W2103644547 @default.
- W2548748044 cites W2122646361 @default.
- W2548748044 cites W2140291948 @default.
- W2548748044 cites W2153635508 @default.
- W2548748044 cites W2155653793 @default.
- W2548748044 cites W2155817051 @default.
- W2548748044 cites W2158698691 @default.
- W2548748044 cites W2163294786 @default.
- W2548748044 cites W2287094062 @default.
- W2548748044 cites W2337344967 @default.
- W2548748044 cites W2484086571 @default.
- W2548748044 cites W2964229844 @default.
- W2548748044 cites W3105835001 @default.
- W2548748044 cites W3133603318 @default.
- W2548748044 cites W4233014035 @default.
- W2548748044 cites W2151969235 @default.
- W2548748044 doi "https://doi.org/10.1109/lsp.2016.2623773" @default.
- W2548748044 hasPublicationYear "2016" @default.
- W2548748044 type Work @default.
- W2548748044 sameAs 2548748044 @default.
- W2548748044 citedByCount "13" @default.
- W2548748044 countsByYear W25487480442018 @default.
- W2548748044 countsByYear W25487480442019 @default.
- W2548748044 countsByYear W25487480442020 @default.
- W2548748044 countsByYear W25487480442021 @default.
- W2548748044 countsByYear W25487480442022 @default.
- W2548748044 crossrefType "journal-article" @default.
- W2548748044 hasAuthorship W2548748044A5046978392 @default.
- W2548748044 hasAuthorship W2548748044A5056152995 @default.
- W2548748044 hasAuthorship W2548748044A5064912897 @default.
- W2548748044 hasAuthorship W2548748044A5072343019 @default.
- W2548748044 hasAuthorship W2548748044A5089040739 @default.
- W2548748044 hasBestOaLocation W25487480442 @default.
- W2548748044 hasConcept C124101348 @default.
- W2548748044 hasConcept C153180895 @default.
- W2548748044 hasConcept C154945302 @default.
- W2548748044 hasConcept C41008148 @default.
- W2548748044 hasConcept C739882 @default.
- W2548748044 hasConceptScore W2548748044C124101348 @default.
- W2548748044 hasConceptScore W2548748044C153180895 @default.
- W2548748044 hasConceptScore W2548748044C154945302 @default.
- W2548748044 hasConceptScore W2548748044C41008148 @default.
- W2548748044 hasConceptScore W2548748044C739882 @default.
- W2548748044 hasIssue "12" @default.
- W2548748044 hasLocation W25487480441 @default.
- W2548748044 hasLocation W25487480442 @default.
- W2548748044 hasOpenAccess W2548748044 @default.
- W2548748044 hasPrimaryLocation W25487480441 @default.
- W2548748044 hasRelatedWork W1978450727 @default.
- W2548748044 hasRelatedWork W2033914206 @default.
- W2548748044 hasRelatedWork W2076520961 @default.
- W2548748044 hasRelatedWork W2146076056 @default.
- W2548748044 hasRelatedWork W2163371487 @default.
- W2548748044 hasRelatedWork W2163831990 @default.
- W2548748044 hasRelatedWork W2378160586 @default.
- W2548748044 hasRelatedWork W3003836766 @default.
- W2548748044 hasRelatedWork W4244943737 @default.
- W2548748044 hasRelatedWork W2289108895 @default.
- W2548748044 hasVolume "23" @default.
- W2548748044 isParatext "false" @default.
- W2548748044 isRetracted "false" @default.
- W2548748044 magId "2548748044" @default.
- W2548748044 workType "article" @default.