Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548755710> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2548755710 endingPage "30" @default.
- W2548755710 startingPage "27" @default.
- W2548755710 abstract "Possibilities of applying intelligent machine learning technique based on support vectors for predicting investment measures are considered in the article. The base features of support vector method over traditional econometric techniques for improving the forecast quality are described. Computer modeling results in terms of tuning support vector machine models developed with programming language Python for predicting some investment measures are shown." @default.
- W2548755710 created "2016-11-11" @default.
- W2548755710 creator A5001432982 @default.
- W2548755710 creator A5071255349 @default.
- W2548755710 creator A5083781750 @default.
- W2548755710 date "2016-01-01" @default.
- W2548755710 modified "2023-09-25" @default.
- W2548755710 title "SUPPORT VECTOR MACHINE METHOD FOR PREDICTING INVESTMENT MEASURES" @default.
- W2548755710 doi "https://doi.org/10.21686/2500-3925-2016-4-27-30" @default.
- W2548755710 hasPublicationYear "2016" @default.
- W2548755710 type Work @default.
- W2548755710 sameAs 2548755710 @default.
- W2548755710 citedByCount "0" @default.
- W2548755710 crossrefType "journal-article" @default.
- W2548755710 hasAuthorship W2548755710A5001432982 @default.
- W2548755710 hasAuthorship W2548755710A5071255349 @default.
- W2548755710 hasAuthorship W2548755710A5083781750 @default.
- W2548755710 hasBestOaLocation W25487557101 @default.
- W2548755710 hasConcept C119857082 @default.
- W2548755710 hasConcept C12267149 @default.
- W2548755710 hasConcept C124101348 @default.
- W2548755710 hasConcept C125168437 @default.
- W2548755710 hasConcept C14948415 @default.
- W2548755710 hasConcept C154945302 @default.
- W2548755710 hasConcept C17744445 @default.
- W2548755710 hasConcept C199360897 @default.
- W2548755710 hasConcept C199539241 @default.
- W2548755710 hasConcept C27548731 @default.
- W2548755710 hasConcept C41008148 @default.
- W2548755710 hasConcept C519991488 @default.
- W2548755710 hasConcept C94625758 @default.
- W2548755710 hasConceptScore W2548755710C119857082 @default.
- W2548755710 hasConceptScore W2548755710C12267149 @default.
- W2548755710 hasConceptScore W2548755710C124101348 @default.
- W2548755710 hasConceptScore W2548755710C125168437 @default.
- W2548755710 hasConceptScore W2548755710C14948415 @default.
- W2548755710 hasConceptScore W2548755710C154945302 @default.
- W2548755710 hasConceptScore W2548755710C17744445 @default.
- W2548755710 hasConceptScore W2548755710C199360897 @default.
- W2548755710 hasConceptScore W2548755710C199539241 @default.
- W2548755710 hasConceptScore W2548755710C27548731 @default.
- W2548755710 hasConceptScore W2548755710C41008148 @default.
- W2548755710 hasConceptScore W2548755710C519991488 @default.
- W2548755710 hasConceptScore W2548755710C94625758 @default.
- W2548755710 hasIssue "4" @default.
- W2548755710 hasLocation W25487557101 @default.
- W2548755710 hasLocation W25487557102 @default.
- W2548755710 hasOpenAccess W2548755710 @default.
- W2548755710 hasPrimaryLocation W25487557101 @default.
- W2548755710 hasRelatedWork W147281455 @default.
- W2548755710 hasRelatedWork W2101819884 @default.
- W2548755710 hasRelatedWork W2182184513 @default.
- W2548755710 hasRelatedWork W2349452475 @default.
- W2548755710 hasRelatedWork W2528215262 @default.
- W2548755710 hasRelatedWork W2783642721 @default.
- W2548755710 hasRelatedWork W2993844776 @default.
- W2548755710 hasRelatedWork W4253128984 @default.
- W2548755710 hasRelatedWork W4291214623 @default.
- W2548755710 hasRelatedWork W4311365199 @default.
- W2548755710 isParatext "false" @default.
- W2548755710 isRetracted "false" @default.
- W2548755710 magId "2548755710" @default.
- W2548755710 workType "article" @default.