Matches in SemOpenAlex for { <https://semopenalex.org/work/W2548892159> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2548892159 endingPage "690" @default.
- W2548892159 startingPage "686" @default.
- W2548892159 abstract "No AccessTechnical NoteNumerical Modeling of Flow Through Porous Fabric Surface in Parachute SimulationZheng Gao, Richard D. Charles and Xiaolin LiZheng GaoStony Brook University, Stony Brook, New York 11794-3600*Applied Mathematics and Statistics.Search for more papers by this author, Richard D. CharlesU.S. Army Natick Research, Development, and Engineering Center, Natick, Massachusetts 01760†Airdrop Technology Team.Search for more papers by this author and Xiaolin LiStony Brook University, Stony Brook, New York 11794-3600*Applied Mathematics and Statistics.Search for more papers by this authorPublished Online:3 Nov 2016https://doi.org/10.2514/1.J054997SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Lee C. K., “Experimental Investigation of Full-Scale and Model Parachute Opening,” Eighth Aerodynamic Decelerator and Balloon Technology Conference, AIAA, New York, April 1984, pp. 215–223. Google Scholar[2] Peterson C. W., Strickland J. H. and Higuchi H., “The Fluid Dynamics of Parachute Inflation,” Annual Review of Fluid Mechanics, Vol. 28, No. 1, Jan. 1996, pp. 361–387. doi:https://doi.org/10.1146/annurev.fl.28.010196.002045 ARVFA3 0066-4189 CrossrefGoogle Scholar[3] Stein K., Benney R., Kalro V., Tezduyar T. E., Leonard J. and Accorsi M., “Parachute Fluid-Structure Interactions: 3-D Computation,” Computer Methods in Applied Mechanics and Engineering, Vol. 190, Nos. 3–4, 2000, pp. 373–386. doi:https://doi.org/10.1016/S0045-7825(00)00208-5 CrossrefGoogle Scholar[4] Benney R. J. and Stein K. R., “Computational Fluid-Structure Interaction Model for Parachute Inflation,” Journal of Aircraft, Vol. 33, No. 4, July 1996, pp. 730–736. doi:https://doi.org/10.2514/3.47008 LinkGoogle Scholar[5] Kim Y. and Peskin C. S., “3-D Parachute Simulation by the Immersed Boundary Method,” Computers & Fluids, Vol. 38, No. 6, 2009, pp. 1080–1090. doi:https://doi.org/10.1016/j.compfluid.2008.11.002 CPFLBI 0045-7930 CrossrefGoogle Scholar[6] Takizawa K. and Tezduyar T. E., “Computational Methods for Parachute Fluid–Structure Interactions,” Archives of Computational Methods in Engineering, Vol. 19, No. 1, Feb. 2012, pp. 125–169. doi:https://doi.org/10.1007/s11831-012-9070-4 CrossrefGoogle Scholar[7] Tezduyar T. E., Sathe S., Schwaab M., Pausewang J., Christopher J. and Crabtree J., “Fluid-Structure Interaction Modeling of Ringsail Parachutes,” Computational Mechanics, Vol. 43, No. 1, 2008, pp. 133–142. doi:https://doi.org/10.1007/s00466-008-0260-8 CMADEJ CrossrefGoogle Scholar[8] Johari H. and Desabrais K. J., “Vortex Shedding in the Near Wake of a Parachute Canopy,” Journal of Fluid Mechanics, Vol. 536, Aug. 2005, pp. 185–207. doi:https://doi.org/10.1017/S0022112005004490 JFLSA7 0022-1120 CrossrefGoogle Scholar[9] Kim Y. and Peskin C. S., “2-D Parachute Simulation by the Immersed Boundary Method,” Society for Industrial and Applied Mathematics Journal on Scientific Computing, Vol. 28, No. 6, Jan. 2006, pp. 2294–2312. Google Scholar[10] Nield D. A. and Bejan A., Mechanics of Fluid Flow Through a Porous Medium, Springer Science Business Media, New York, Oct. 2012, pp. 1–29, Chap. 1. Google Scholar[11] Wang J., Aquelet N., Tutt B., Do I., Chen H. and Souli M., “Porous Euler-Lagrange Coupling: Application to Parachute Dynamics,” Ninth International LS-DYNA Users Conference, Livermore Software Technology Corporation, July 2006, pp. 11–21. Google Scholar[12] Glimm J., Grove J. W., Li X. L., Shyue K., Zeng Y. and Zhang Q., “Three-Dimensional Front Tracking,” SIAM Journal on Scientific Computing, Vol. 19, No. 3, May 1998, pp. 703–727. doi:https://doi.org/10.1137/S1064827595293600 SJOCE3 1064-8275 CrossrefGoogle Scholar[13] Du J., Fix B., Glimm J., Jia X., Li X., Li Y. and Wu L., “A Simple Package for Front Tracking,” Journal of Computational Physics, Vol. 213, No. 2, April 2006, pp. 613–628. doi:https://doi.org/10.1016/j.jcp.2005.08.034 JCTPAH 0021-9991 CrossrefGoogle Scholar[14] Glimm J., Grove J. W., Li X. and Tan D. C., “Robust Computational Algorithms for Dynamic Interface Tracking in Three Dimensions,” SIAM Journal on Scientific Computing, Vol. 21, No. 6, Jan. 2000, pp. 2240–2256. doi:https://doi.org/10.1137/S1064827598340500 SJOCE3 1064-8275 CrossrefGoogle Scholar[15] Glimm J., Li X.-L., Menikoff R., Sharp D. H. and Zhang Q., “A Numerical Study of Bubble Interactions in Rayleigh-Taylor Instability for Compressible Fluids,” Physics of Fluids A: Fluid Dynamics, Vol. 2, No. 11, 1990, pp. 2046–2054. doi:https://doi.org/10.1063/1.857679 CrossrefGoogle Scholar[16] Li X.-L., Grove J. W. and Zhang Q., “Parallel Computation of Three Dimensional Rayleigh-Taylor Instability in Compressible Fluids Through the Front Tracking Method and Level Set Methods,” Proceedings of the Fourth International Workshop on the Physics of Compressible Turbulent Mixing, Cambridge Univ. Press, Cambridge, MA, March 1993, pp. 94–100. Google Scholar[17] Grove J. W., “The Numerical Simulation of Richtmyer-Meshkov Unstable Interfaces,” Transactions of the Fifth Army Conference on Applied Mathematics and Computing, edited by A. M. S. Committee, U.S. Army Research Office, Rept. 88-1, 1988, pp. 423–435. Google Scholar[18] Hu Y., Shi Q., de Almeida V. F. and Li X., “Numerical Simulation of Phase Transition Problems with Explicit Interface Tracking,” Chemical Engineering Science, Vol. 128, May 2015, pp. 92–108. doi:https://doi.org/10.1016/j.ces.2014.11.053 CESCAC 0009-2509 CrossrefGoogle Scholar[19] Xu Z. L., Kim M., Lu T., Oh W., Glimm J., Samulyak R., Li X. L. and Tzanos C., “Discrete Bubble Modeling of Unsteady Cavitating Flow,” International Journal for Multiscale Computational Engineering, Vol. 4, Nos. 5–6, 2006, pp. 601–616. doi:https://doi.org/10.1615/IntJMultCompEng.v4.i5-6 CrossrefGoogle Scholar[20] Bo W., Liu X., Glimm J. and Li X., “A Robust Front Fracking Method: Verification and Application to Simulation of the Primary Breakup of a Liquid Jet,” SIAM Journal on Scientific Computing, Vol. 33, No. 4, 2011, pp. 1505–1524. CrossrefGoogle Scholar[21] Kim J.-D., Li Y. and Li X., “Simulation of Parachute FSI Using the Front Tracking Method,” Journal of Fluids and Structures, Vol. 37, Feb. 2013, pp. 100–119. doi:https://doi.org/10.1016/j.jfluidstructs.2012.08.011 0889-9746 CrossrefGoogle Scholar[22] Bo W., Fix B., Glimm J., Li X., Liu X., Samulyak R. and Wu L., “Frontier and Applications to Scientific and Engineering Problems,” Sixth International Congress on Industrial Applied Mathematics and GAMM Annual Meeting, Vol. 7, Wiley, Hoboken, NJ, 2007, pp. 1024507–1024508. Google Scholar[23] Shi Q., Reasor D., Gao Z., Li X. and Charles R. D., “On the Verification and Validation of a Spring Fabric for Modeling Parachute Inflation,” Journal of Fluids and Structures, Vol. 58, Oct. 2015, pp. 20–39. doi:https://doi.org/10.1016/j.jfluidstructs.2015.06.014 0889-9746 CrossrefGoogle Scholar[24] Kim J. and Moin P., “Application of a Fractional-Step Method to Incompressible Navier–Stokes Equations,” Journal of Computational Physics, Vol. 59, No. 2, June 1985, pp. 308–323. doi:https://doi.org/10.1016/0021-9991(85)90148-2 JCTPAH 0021-9991 CrossrefGoogle Scholar[25] Caiazzo A., Fernández M. A., Gerbeau J.-F. and Martin V., “Projection Schemes for Fluid Flows Through a Porous Interface,” SIAM Journal on Scientific Computing, Vol. 33, No. 2, Jan. 2011, pp. 541–564. CrossrefGoogle Scholar[26] Fedkiw R. P., Aslam T., Merriman B. and Osher S., “A Non-Oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method),” Journal of Computational Physics, Vol. 152, No. 2, July 1999, pp. 457–492. doi:https://doi.org/10.1006/jcph.1999.6236 JCTPAH 0021-9991 CrossrefGoogle Scholar[27] Kang M., Fedkiw R. P. and Liu X.-D., “A Boundary Condition Capturing Method for Multiphase Incompressible Flow,” Journal of Scientific Computing, Vol. 15, No. 3, 2000, pp. 323–360. doi:https://doi.org/10.1023/A:1011178417620 JSCOEB 0885-7474 CrossrefGoogle Scholar[28] Liu X.-D., Fedkiw R. P. and Kang M., “A Boundary Condition Capturing Method for Poisson’s Equation on Irregular Domains,” Journal of Computational Physics, Vol. 160, No. 1, 2000, pp. 151–178. doi:https://doi.org/10.1006/jcph.2000.6444 JCTPAH 0021-9991 CrossrefGoogle Scholar[29] Yakhot V. and Smith L. M., “The Renormalization Group, the Epsilon-Expansion and Derivation of Turbulence Models,” Journal of Scientific Computing, Vol. 7, No. 1, March 1992, pp. 35–61. doi:https://doi.org/10.1007/BF01060210 JSCOEB 0885-7474 CrossrefGoogle Scholar[30] Tutt B., Richard C., Roland S. and Noetscher G., “Development of Parachute Simulation Techniques in LS-DYNA,” 11th International LS-DYNA Users Conference, Livermore Software Technology Corporation, 2010, pp. 25–36. Google Scholar[31] Ewing E., Bixby H. and Knacke T., “Recovery Systems Design Guide,” Defense Technical Information Center Technical Rept. AFFDU-TR-78-151, Fort Belvoir, VA, Dec. 1978. CrossrefGoogle Scholar[32] Roberts B. W., “Axisymmetric, Self-Excited Oscillations in Parachutes,” Journal of Aircraft, Vol. 11, No. 12, Dec. 1974, pp. 736–744. doi:https://doi.org/10.2514/3.60408 LinkGoogle Scholar[33] Brown D.-L., Cortez R. and Minion M.-L., “Accurate Projection Methods for the Incompressible Navier–Stokes Equations,” Journal of Computational Physics, Vol. 168, No. 2, 2001, pp. 464–499. doi:https://doi.org/10.1006/jcph.2001.6715 JCTPAH 0021-9991 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byThin Surface Permeability Modeling for Mars Supersonic Parachute InflationsSeyed Danial Ghasimi and Jason Rabinovitch19 January 2023The behavior of unconstrained parachute fabric under aerodynamic loadingJournal of Fluids and Structures, Vol. 113Similarity criteria for canopy porosity and environmental impact analysis of air permeability13 October 2020 | Journal of Industrial Textiles, Vol. 51, No. 5_supplHomogenized Flux-Body Force Treatment of Compressible Viscous Porous Wall Boundary ConditionsDaniel Z. Huang, Man Long Wong, Sanjiva K. Lele and Charbel Farhat25 March 2021 | AIAA Journal, Vol. 59, No. 6Modeling, Simulation and Validation of Supersonic Parachute Inflation Dynamics during Mars LandingDaniel Z. Huang, Philip Avery, Charbel Farhat, Jason Rabinovitch, Armen Derkevorkian and Lee D. Peterson5 January 2020Numerical Study of Extra-Large Parachute’s Pre-Inflation in Finite Mass Situation12 June 2018 | Autex Research Journal, Vol. 18, No. 2 What's Popular Volume 55, Number 2February 2017 CrossmarkInformationCopyright © 2016 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0001-1452 (print) or 1533-385X (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAerodynamicsAeronautical EngineeringAeronauticsComputational Fluid DynamicsConservation of Momentum EquationsEquations of Fluid DynamicsFinite Difference MethodFlow RegimesFluid DynamicsFluid Flow PropertiesNumerical AnalysisStreamlines FlowWind Tunnels KeywordsNumerical ModelingFreestream VelocityPermeabilityPoisson's EquationVelocity ProfilesIncompressible FlowYoung's ModulusGraphics Processing UnitWind Tunnel TestsFlow VelocityAcknowledgmentsThis work is currently supported in part by the U.S. Army Research Office under the award W911NF1410428 and the ARO-DURIP Grant W911NF-15-1-0403. The authors would like to give special thanks to Joseph Myers of the U.S. Army Research Office for fostering the collaborative relationship between authors at Stony Brook University and the Army scientist at the Army Natick Research Development and Engineering Center. The authors would like to thank Qiangqiang Shi and Yiyang Yang for helpful discussion and early work on the parachute problem. Xiaolin Li would also like to acknowledge the support by the Oak Ridge National Laboratory through the High Education Research Experience program.PDF Received25 January 2016Accepted10 August 2016Published online3 November 2016" @default.
- W2548892159 created "2016-11-11" @default.
- W2548892159 creator A5002921602 @default.
- W2548892159 creator A5022526821 @default.
- W2548892159 creator A5059466984 @default.
- W2548892159 date "2017-02-01" @default.
- W2548892159 modified "2023-10-18" @default.
- W2548892159 title "Numerical Modeling of Flow Through Porous Fabric Surface in Parachute Simulation" @default.
- W2548892159 cites W1459346295 @default.
- W2548892159 cites W1558361595 @default.
- W2548892159 cites W1854437229 @default.
- W2548892159 cites W1983446206 @default.
- W2548892159 cites W1987341869 @default.
- W2548892159 cites W1990260176 @default.
- W2548892159 cites W2000068428 @default.
- W2548892159 cites W2002335991 @default.
- W2548892159 cites W2005316292 @default.
- W2548892159 cites W2011261782 @default.
- W2548892159 cites W2020023816 @default.
- W2548892159 cites W2025909554 @default.
- W2548892159 cites W2026834996 @default.
- W2548892159 cites W2030153017 @default.
- W2548892159 cites W2032723419 @default.
- W2548892159 cites W2034237628 @default.
- W2548892159 cites W2041824785 @default.
- W2548892159 cites W2045618004 @default.
- W2548892159 cites W2047868180 @default.
- W2548892159 cites W2068159053 @default.
- W2548892159 cites W2073791219 @default.
- W2548892159 cites W2077229134 @default.
- W2548892159 cites W2088575693 @default.
- W2548892159 cites W2132635779 @default.
- W2548892159 cites W2154602877 @default.
- W2548892159 doi "https://doi.org/10.2514/1.j054997" @default.
- W2548892159 hasPublicationYear "2017" @default.
- W2548892159 type Work @default.
- W2548892159 sameAs 2548892159 @default.
- W2548892159 citedByCount "10" @default.
- W2548892159 countsByYear W25488921592018 @default.
- W2548892159 countsByYear W25488921592019 @default.
- W2548892159 countsByYear W25488921592020 @default.
- W2548892159 countsByYear W25488921592021 @default.
- W2548892159 countsByYear W25488921592022 @default.
- W2548892159 countsByYear W25488921592023 @default.
- W2548892159 crossrefType "journal-article" @default.
- W2548892159 hasAuthorship W2548892159A5002921602 @default.
- W2548892159 hasAuthorship W2548892159A5022526821 @default.
- W2548892159 hasAuthorship W2548892159A5059466984 @default.
- W2548892159 hasConcept C121332964 @default.
- W2548892159 hasConcept C127413603 @default.
- W2548892159 hasConcept C146978453 @default.
- W2548892159 hasConcept C159985019 @default.
- W2548892159 hasConcept C1633027 @default.
- W2548892159 hasConcept C192562407 @default.
- W2548892159 hasConcept C2524010 @default.
- W2548892159 hasConcept C2776799497 @default.
- W2548892159 hasConcept C33923547 @default.
- W2548892159 hasConcept C38349280 @default.
- W2548892159 hasConcept C500300565 @default.
- W2548892159 hasConcept C57879066 @default.
- W2548892159 hasConcept C6648577 @default.
- W2548892159 hasConceptScore W2548892159C121332964 @default.
- W2548892159 hasConceptScore W2548892159C127413603 @default.
- W2548892159 hasConceptScore W2548892159C146978453 @default.
- W2548892159 hasConceptScore W2548892159C159985019 @default.
- W2548892159 hasConceptScore W2548892159C1633027 @default.
- W2548892159 hasConceptScore W2548892159C192562407 @default.
- W2548892159 hasConceptScore W2548892159C2524010 @default.
- W2548892159 hasConceptScore W2548892159C2776799497 @default.
- W2548892159 hasConceptScore W2548892159C33923547 @default.
- W2548892159 hasConceptScore W2548892159C38349280 @default.
- W2548892159 hasConceptScore W2548892159C500300565 @default.
- W2548892159 hasConceptScore W2548892159C57879066 @default.
- W2548892159 hasConceptScore W2548892159C6648577 @default.
- W2548892159 hasIssue "2" @default.
- W2548892159 hasLocation W25488921591 @default.
- W2548892159 hasOpenAccess W2548892159 @default.
- W2548892159 hasPrimaryLocation W25488921591 @default.
- W2548892159 hasRelatedWork W2061421551 @default.
- W2548892159 hasRelatedWork W2150798906 @default.
- W2548892159 hasRelatedWork W2348360146 @default.
- W2548892159 hasRelatedWork W2351629602 @default.
- W2548892159 hasRelatedWork W2386962350 @default.
- W2548892159 hasRelatedWork W3193694681 @default.
- W2548892159 hasRelatedWork W4254014471 @default.
- W2548892159 hasRelatedWork W4313537371 @default.
- W2548892159 hasRelatedWork W4362649909 @default.
- W2548892159 hasRelatedWork W89173880 @default.
- W2548892159 hasVolume "55" @default.
- W2548892159 isParatext "false" @default.
- W2548892159 isRetracted "false" @default.
- W2548892159 magId "2548892159" @default.
- W2548892159 workType "article" @default.