Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549022457> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2549022457 endingPage "87" @default.
- W2549022457 startingPage "79" @default.
- W2549022457 abstract "This paper proposes a method for the real-time prediction of water quality index (WQI) by excluding the biological oxygen demand and chemical oxygen demand, which are not measured in real time, from the model inputs. In this study, feedforward artificial neural networks are used to model the WQI in Perak River basin Malaysia due to its capability in modelling nonlinear systems. The results show that the developed single feedforward neural network model can predict WQI very well with the coefficient of determination R2 and mean squared error (MSE) of 0.9090 and 0.1740 on the unseen validation data, respectively. In addition to that, the aggregation of multiple neural networks in predicting the WQI further improves the prediction performance on the unseen validation data. Forward selection and backward elimination selective combination methods are used to combine multiple neural networks and both methods lead to 6 and 5 networks being combined with R2 and MSE of 0.9340, 0.9270 and 0.1156, 0.1256, respectively. It is clearly shown that combining multiple neural networks does improve the performance for WQI prediction." @default.
- W2549022457 created "2016-11-11" @default.
- W2549022457 creator A5025550558 @default.
- W2549022457 creator A5041978682 @default.
- W2549022457 creator A5052490084 @default.
- W2549022457 creator A5053208030 @default.
- W2549022457 date "2016-11-23" @default.
- W2549022457 modified "2023-10-05" @default.
- W2549022457 title "Improving water quality index prediction in Perak River basin Malaysia through a combination of multiple neural networks" @default.
- W2549022457 cites W1965197372 @default.
- W2549022457 cites W1982779742 @default.
- W2549022457 cites W1984676609 @default.
- W2549022457 cites W1991859953 @default.
- W2549022457 cites W2007813324 @default.
- W2549022457 cites W2026391261 @default.
- W2549022457 cites W2042728365 @default.
- W2549022457 cites W2048680275 @default.
- W2549022457 cites W2048772328 @default.
- W2549022457 cites W2070986256 @default.
- W2549022457 cites W2083505941 @default.
- W2549022457 doi "https://doi.org/10.1080/15715124.2016.1256297" @default.
- W2549022457 hasPublicationYear "2016" @default.
- W2549022457 type Work @default.
- W2549022457 sameAs 2549022457 @default.
- W2549022457 citedByCount "31" @default.
- W2549022457 countsByYear W25490224572018 @default.
- W2549022457 countsByYear W25490224572019 @default.
- W2549022457 countsByYear W25490224572020 @default.
- W2549022457 countsByYear W25490224572021 @default.
- W2549022457 countsByYear W25490224572022 @default.
- W2549022457 countsByYear W25490224572023 @default.
- W2549022457 crossrefType "journal-article" @default.
- W2549022457 hasAuthorship W2549022457A5025550558 @default.
- W2549022457 hasAuthorship W2549022457A5041978682 @default.
- W2549022457 hasAuthorship W2549022457A5052490084 @default.
- W2549022457 hasAuthorship W2549022457A5053208030 @default.
- W2549022457 hasBestOaLocation W25490224572 @default.
- W2549022457 hasConcept C105795698 @default.
- W2549022457 hasConcept C119857082 @default.
- W2549022457 hasConcept C124101348 @default.
- W2549022457 hasConcept C127413603 @default.
- W2549022457 hasConcept C133731056 @default.
- W2549022457 hasConcept C136764020 @default.
- W2549022457 hasConcept C139945424 @default.
- W2549022457 hasConcept C154945302 @default.
- W2549022457 hasConcept C167085575 @default.
- W2549022457 hasConcept C18903297 @default.
- W2549022457 hasConcept C2777382242 @default.
- W2549022457 hasConcept C2780797713 @default.
- W2549022457 hasConcept C33923547 @default.
- W2549022457 hasConcept C38858127 @default.
- W2549022457 hasConcept C41008148 @default.
- W2549022457 hasConcept C47702885 @default.
- W2549022457 hasConcept C50644808 @default.
- W2549022457 hasConcept C86803240 @default.
- W2549022457 hasConceptScore W2549022457C105795698 @default.
- W2549022457 hasConceptScore W2549022457C119857082 @default.
- W2549022457 hasConceptScore W2549022457C124101348 @default.
- W2549022457 hasConceptScore W2549022457C127413603 @default.
- W2549022457 hasConceptScore W2549022457C133731056 @default.
- W2549022457 hasConceptScore W2549022457C136764020 @default.
- W2549022457 hasConceptScore W2549022457C139945424 @default.
- W2549022457 hasConceptScore W2549022457C154945302 @default.
- W2549022457 hasConceptScore W2549022457C167085575 @default.
- W2549022457 hasConceptScore W2549022457C18903297 @default.
- W2549022457 hasConceptScore W2549022457C2777382242 @default.
- W2549022457 hasConceptScore W2549022457C2780797713 @default.
- W2549022457 hasConceptScore W2549022457C33923547 @default.
- W2549022457 hasConceptScore W2549022457C38858127 @default.
- W2549022457 hasConceptScore W2549022457C41008148 @default.
- W2549022457 hasConceptScore W2549022457C47702885 @default.
- W2549022457 hasConceptScore W2549022457C50644808 @default.
- W2549022457 hasConceptScore W2549022457C86803240 @default.
- W2549022457 hasIssue "1" @default.
- W2549022457 hasLocation W25490224571 @default.
- W2549022457 hasLocation W25490224572 @default.
- W2549022457 hasOpenAccess W2549022457 @default.
- W2549022457 hasPrimaryLocation W25490224571 @default.
- W2549022457 hasRelatedWork W1604847762 @default.
- W2549022457 hasRelatedWork W2086999410 @default.
- W2549022457 hasRelatedWork W2099878889 @default.
- W2549022457 hasRelatedWork W2258992572 @default.
- W2549022457 hasRelatedWork W2359410228 @default.
- W2549022457 hasRelatedWork W2395675490 @default.
- W2549022457 hasRelatedWork W2549022457 @default.
- W2549022457 hasRelatedWork W3177279640 @default.
- W2549022457 hasRelatedWork W4386132124 @default.
- W2549022457 hasRelatedWork W1558347683 @default.
- W2549022457 hasVolume "15" @default.
- W2549022457 isParatext "false" @default.
- W2549022457 isRetracted "false" @default.
- W2549022457 magId "2549022457" @default.
- W2549022457 workType "article" @default.