Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549063375> ?p ?o ?g. }
- W2549063375 abstract "Multispectral pedestrian detection is essential for around-the-clock applications, e.g., surveillance and autonomous driving. We deeply analyze Faster R-CNN for multispectral pedestrian detection task and then model it into a convolutional network (ConvNet) fusion problem. Further, we discover that ConvNet-based pedestrian detectors trained by color or thermal images separately provide complementary information in discriminating human instances. Thus there is a large potential to improve pedestrian detection by using color and thermal images in DNNs simultaneously. We carefully design four ConvNet fusion architectures that integrate two-branch ConvNets on different DNNs stages, all of which yield better performance compared with the baseline detector. Our experimental results on KAIST pedestrian benchmark show that the Halfway Fusion model that performs fusion on the middle-level convolutional features outperforms the baseline method by 11% and yields a missing rate 3.5% lower than the other proposed architectures." @default.
- W2549063375 created "2016-11-30" @default.
- W2549063375 creator A5042059453 @default.
- W2549063375 creator A5064437234 @default.
- W2549063375 creator A5066553616 @default.
- W2549063375 creator A5077322975 @default.
- W2549063375 date "2016-11-08" @default.
- W2549063375 modified "2023-09-28" @default.
- W2549063375 title "Multispectral Deep Neural Networks for Pedestrian Detection" @default.
- W2549063375 cites W1565402342 @default.
- W2549063375 cites W1686810756 @default.
- W2549063375 cites W1799366690 @default.
- W2549063375 cites W1882819926 @default.
- W2549063375 cites W1949478088 @default.
- W2549063375 cites W1970579918 @default.
- W2549063375 cites W2003683977 @default.
- W2549063375 cites W2031454541 @default.
- W2549063375 cites W2098064689 @default.
- W2549063375 cites W2102605133 @default.
- W2549063375 cites W2107775979 @default.
- W2549063375 cites W2114486396 @default.
- W2549063375 cites W2115471590 @default.
- W2549063375 cites W2125556102 @default.
- W2549063375 cites W2151454023 @default.
- W2549063375 cites W2161969291 @default.
- W2549063375 cites W2164587673 @default.
- W2549063375 cites W2184188583 @default.
- W2549063375 cites W2258301314 @default.
- W2549063375 cites W2394987862 @default.
- W2549063375 cites W2548197316 @default.
- W2549063375 cites W2902314041 @default.
- W2549063375 cites W2949493420 @default.
- W2549063375 cites W2949847849 @default.
- W2549063375 cites W2950561226 @default.
- W2549063375 cites W2951548327 @default.
- W2549063375 cites W2952186347 @default.
- W2549063375 cites W2953106684 @default.
- W2549063375 cites W2287889828 @default.
- W2549063375 doi "https://doi.org/10.48550/arxiv.1611.02644" @default.
- W2549063375 hasPublicationYear "2016" @default.
- W2549063375 type Work @default.
- W2549063375 sameAs 2549063375 @default.
- W2549063375 citedByCount "8" @default.
- W2549063375 countsByYear W25490633752018 @default.
- W2549063375 countsByYear W25490633752019 @default.
- W2549063375 countsByYear W25490633752020 @default.
- W2549063375 countsByYear W25490633752021 @default.
- W2549063375 countsByYear W25490633752023 @default.
- W2549063375 crossrefType "posted-content" @default.
- W2549063375 hasAuthorship W2549063375A5042059453 @default.
- W2549063375 hasAuthorship W2549063375A5064437234 @default.
- W2549063375 hasAuthorship W2549063375A5066553616 @default.
- W2549063375 hasAuthorship W2549063375A5077322975 @default.
- W2549063375 hasBestOaLocation W25490633751 @default.
- W2549063375 hasConcept C108583219 @default.
- W2549063375 hasConcept C111368507 @default.
- W2549063375 hasConcept C12725497 @default.
- W2549063375 hasConcept C127313418 @default.
- W2549063375 hasConcept C138885662 @default.
- W2549063375 hasConcept C153180895 @default.
- W2549063375 hasConcept C154945302 @default.
- W2549063375 hasConcept C158525013 @default.
- W2549063375 hasConcept C166957645 @default.
- W2549063375 hasConcept C173163844 @default.
- W2549063375 hasConcept C185798385 @default.
- W2549063375 hasConcept C205649164 @default.
- W2549063375 hasConcept C2777113093 @default.
- W2549063375 hasConcept C2780156472 @default.
- W2549063375 hasConcept C31972630 @default.
- W2549063375 hasConcept C33954974 @default.
- W2549063375 hasConcept C41008148 @default.
- W2549063375 hasConcept C41895202 @default.
- W2549063375 hasConcept C58640448 @default.
- W2549063375 hasConcept C76155785 @default.
- W2549063375 hasConcept C81363708 @default.
- W2549063375 hasConcept C94915269 @default.
- W2549063375 hasConceptScore W2549063375C108583219 @default.
- W2549063375 hasConceptScore W2549063375C111368507 @default.
- W2549063375 hasConceptScore W2549063375C12725497 @default.
- W2549063375 hasConceptScore W2549063375C127313418 @default.
- W2549063375 hasConceptScore W2549063375C138885662 @default.
- W2549063375 hasConceptScore W2549063375C153180895 @default.
- W2549063375 hasConceptScore W2549063375C154945302 @default.
- W2549063375 hasConceptScore W2549063375C158525013 @default.
- W2549063375 hasConceptScore W2549063375C166957645 @default.
- W2549063375 hasConceptScore W2549063375C173163844 @default.
- W2549063375 hasConceptScore W2549063375C185798385 @default.
- W2549063375 hasConceptScore W2549063375C205649164 @default.
- W2549063375 hasConceptScore W2549063375C2777113093 @default.
- W2549063375 hasConceptScore W2549063375C2780156472 @default.
- W2549063375 hasConceptScore W2549063375C31972630 @default.
- W2549063375 hasConceptScore W2549063375C33954974 @default.
- W2549063375 hasConceptScore W2549063375C41008148 @default.
- W2549063375 hasConceptScore W2549063375C41895202 @default.
- W2549063375 hasConceptScore W2549063375C58640448 @default.
- W2549063375 hasConceptScore W2549063375C76155785 @default.
- W2549063375 hasConceptScore W2549063375C81363708 @default.
- W2549063375 hasConceptScore W2549063375C94915269 @default.
- W2549063375 hasLocation W25490633751 @default.
- W2549063375 hasOpenAccess W2549063375 @default.