Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549168577> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2549168577 endingPage "137" @default.
- W2549168577 startingPage "131" @default.
- W2549168577 abstract "The selection of input variables from different techniques can provide different artificial neural network (ANN) model performances. This study utilizes an ANN model to forecast the water level at the M.7 gauge station for t+48 hour. Three objectives to be investigated are: (1) to compare the efficiency of four input determination techniques (cross correlation, stepwise regression, cross correlation with stepwise regression, and genetic algorithm); (2) to investigate the number of hidden nodes from 1-2n+1 node; and (3) to compare two different learning algorithms (Levenberg Marquardt-LM and Baysian Regularization-BR). Results demonstrate that the cross correlation and the cross correlation with stepwise regression techniques are best for selecting input variables to forecast water levels at t+48 hours at the M.7 gauge station. Additionally, the use of only one hidden node is sufficient for the ANN model, and LM and BR learning models perform similarly. KeywordsInput Determination; Mun Basin; Flood Forecasting; Artificial Neural Network" @default.
- W2549168577 created "2016-11-30" @default.
- W2549168577 creator A5021040409 @default.
- W2549168577 creator A5045453732 @default.
- W2549168577 date "2015-04-06" @default.
- W2549168577 modified "2023-09-24" @default.
- W2549168577 title "The Efficiency of Input Determination Techniques in ANN for Flood Forecasting, Mun Basin, Thailand" @default.
- W2549168577 cites W1497256448 @default.
- W2549168577 cites W1578650557 @default.
- W2549168577 cites W1964960433 @default.
- W2549168577 cites W1979653734 @default.
- W2549168577 cites W2011492070 @default.
- W2549168577 cites W2036962776 @default.
- W2549168577 cites W2057446454 @default.
- W2549168577 cites W2077027672 @default.
- W2549168577 cites W2080956836 @default.
- W2549168577 cites W2090692095 @default.
- W2549168577 cites W2102017823 @default.
- W2549168577 cites W2109413746 @default.
- W2549168577 cites W2120013429 @default.
- W2549168577 cites W2126557578 @default.
- W2549168577 cites W2142565591 @default.
- W2549168577 cites W2143180057 @default.
- W2549168577 cites W2159940720 @default.
- W2549168577 cites W2186223821 @default.
- W2549168577 cites W2313442435 @default.
- W2549168577 cites W2530728114 @default.
- W2549168577 cites W2603045115 @default.
- W2549168577 doi "https://doi.org/10.5963/jwrhe0402002" @default.
- W2549168577 hasPublicationYear "2015" @default.
- W2549168577 type Work @default.
- W2549168577 sameAs 2549168577 @default.
- W2549168577 citedByCount "2" @default.
- W2549168577 countsByYear W25491685772021 @default.
- W2549168577 countsByYear W25491685772023 @default.
- W2549168577 crossrefType "journal-article" @default.
- W2549168577 hasAuthorship W2549168577A5021040409 @default.
- W2549168577 hasAuthorship W2549168577A5045453732 @default.
- W2549168577 hasBestOaLocation W25491685771 @default.
- W2549168577 hasConcept C109007969 @default.
- W2549168577 hasConcept C114793014 @default.
- W2549168577 hasConcept C127313418 @default.
- W2549168577 hasConcept C127413603 @default.
- W2549168577 hasConcept C153294291 @default.
- W2549168577 hasConcept C154945302 @default.
- W2549168577 hasConcept C166957645 @default.
- W2549168577 hasConcept C183195422 @default.
- W2549168577 hasConcept C187320778 @default.
- W2549168577 hasConcept C205649164 @default.
- W2549168577 hasConcept C39432304 @default.
- W2549168577 hasConcept C41008148 @default.
- W2549168577 hasConcept C50644808 @default.
- W2549168577 hasConcept C74256435 @default.
- W2549168577 hasConcept C76886044 @default.
- W2549168577 hasConceptScore W2549168577C109007969 @default.
- W2549168577 hasConceptScore W2549168577C114793014 @default.
- W2549168577 hasConceptScore W2549168577C127313418 @default.
- W2549168577 hasConceptScore W2549168577C127413603 @default.
- W2549168577 hasConceptScore W2549168577C153294291 @default.
- W2549168577 hasConceptScore W2549168577C154945302 @default.
- W2549168577 hasConceptScore W2549168577C166957645 @default.
- W2549168577 hasConceptScore W2549168577C183195422 @default.
- W2549168577 hasConceptScore W2549168577C187320778 @default.
- W2549168577 hasConceptScore W2549168577C205649164 @default.
- W2549168577 hasConceptScore W2549168577C39432304 @default.
- W2549168577 hasConceptScore W2549168577C41008148 @default.
- W2549168577 hasConceptScore W2549168577C50644808 @default.
- W2549168577 hasConceptScore W2549168577C74256435 @default.
- W2549168577 hasConceptScore W2549168577C76886044 @default.
- W2549168577 hasIssue "2" @default.
- W2549168577 hasLocation W25491685771 @default.
- W2549168577 hasOpenAccess W2549168577 @default.
- W2549168577 hasPrimaryLocation W25491685771 @default.
- W2549168577 hasRelatedWork W2011394070 @default.
- W2549168577 hasRelatedWork W2014284164 @default.
- W2549168577 hasRelatedWork W2268534958 @default.
- W2549168577 hasRelatedWork W2349586213 @default.
- W2549168577 hasRelatedWork W2366679374 @default.
- W2549168577 hasRelatedWork W2527396226 @default.
- W2549168577 hasRelatedWork W2549544585 @default.
- W2549168577 hasRelatedWork W2770517037 @default.
- W2549168577 hasRelatedWork W2909495622 @default.
- W2549168577 hasRelatedWork W3155294935 @default.
- W2549168577 hasVolume "4" @default.
- W2549168577 isParatext "false" @default.
- W2549168577 isRetracted "false" @default.
- W2549168577 magId "2549168577" @default.
- W2549168577 workType "article" @default.