Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549335396> ?p ?o ?g. }
- W2549335396 abstract "Scheduling is the process of allocating resources to the tasks over time. A scheduling problem can be modeled as an assignment problem under constraints and is therefore an optimization problem. In real scenarios a scheduling problem is dynamic in nature as the information required is often gradually revealed or changes over time. In the case of dynamic problems, planning is performed in real time and the related scheduling must be finished before the time window reaches the deadline. The major factors that make the scheduling problems dynamic are: • The dynamic nature of tasks: inclusion of new tasks at run-time or the exclusion of some existing tasks results in a need for a rescheduling. • Random failures: equipment failures result in unpredicted process flows; this generally requires a rescheduling. • Sequence-dependent setups: makes each job to wait for its time and sometimes delayed because of the eventual unavailability of resources. Traditional scheduling techniques face a serious complexity problem due to the NPhard nature of the related optimization problem. Therefore, a key challenge is the search for algorithms/schemes which should provide good quality solutions but at a computation time fitting the requirements of a real-time computing. The so-called “analog computing” is considered in this work to design a novel scheme capable of delivering an optimal solution of the scheduling problem at a relatively ultra-short time while compared to traditional counterparts’ like approaches involving operations research schemes or heuristics. The novel scheme will involve, in the heart, cellular neural networks (CNN) based processors, which will be the key pillar of the analog computing based ultra-fast solver of the dynamic scheduling problems of relevance in transportation and production. CNN-based analog computing has the very interesting advantage of an easy implementation or emulation on digital platforms (i.e., on personal computers or on hardware platforms such as DSP and FPGA boards)." @default.
- W2549335396 created "2016-11-30" @default.
- W2549335396 creator A5063239012 @default.
- W2549335396 date "2009-01-01" @default.
- W2549335396 modified "2023-09-27" @default.
- W2549335396 title "A cellular neural network based analog computing approach for ultra-fast adaptive scheduling" @default.
- W2549335396 cites W1507539267 @default.
- W2549335396 cites W1509665442 @default.
- W2549335396 cites W1531857721 @default.
- W2549335396 cites W1563362301 @default.
- W2549335396 cites W1639032689 @default.
- W2549335396 cites W1992370758 @default.
- W2549335396 cites W2000331453 @default.
- W2549335396 cites W2014653572 @default.
- W2549335396 cites W2040406871 @default.
- W2549335396 cites W2056717940 @default.
- W2549335396 cites W2056974361 @default.
- W2549335396 cites W2066600231 @default.
- W2549335396 cites W2067860534 @default.
- W2549335396 cites W2075265959 @default.
- W2549335396 cites W2104670598 @default.
- W2549335396 cites W2111095683 @default.
- W2549335396 cites W2128084896 @default.
- W2549335396 cites W2133357806 @default.
- W2549335396 cites W2135375956 @default.
- W2549335396 cites W2137830021 @default.
- W2549335396 cites W2155078139 @default.
- W2549335396 cites W2165645448 @default.
- W2549335396 cites W2169772335 @default.
- W2549335396 cites W2328725012 @default.
- W2549335396 cites W597024874 @default.
- W2549335396 cites W608112653 @default.
- W2549335396 cites W612144037 @default.
- W2549335396 cites W2169337137 @default.
- W2549335396 hasPublicationYear "2009" @default.
- W2549335396 type Work @default.
- W2549335396 sameAs 2549335396 @default.
- W2549335396 citedByCount "0" @default.
- W2549335396 crossrefType "journal-article" @default.
- W2549335396 hasAuthorship W2549335396A5063239012 @default.
- W2549335396 hasConcept C107568181 @default.
- W2549335396 hasConcept C111919701 @default.
- W2549335396 hasConcept C119948110 @default.
- W2549335396 hasConcept C120314980 @default.
- W2549335396 hasConcept C126255220 @default.
- W2549335396 hasConcept C127413603 @default.
- W2549335396 hasConcept C127456818 @default.
- W2549335396 hasConcept C127705205 @default.
- W2549335396 hasConcept C149635348 @default.
- W2549335396 hasConcept C200601418 @default.
- W2549335396 hasConcept C206729178 @default.
- W2549335396 hasConcept C2780505938 @default.
- W2549335396 hasConcept C31258907 @default.
- W2549335396 hasConcept C31689143 @default.
- W2549335396 hasConcept C33923547 @default.
- W2549335396 hasConcept C41008148 @default.
- W2549335396 hasConcept C5119721 @default.
- W2549335396 hasConcept C55416958 @default.
- W2549335396 hasConcept C74172769 @default.
- W2549335396 hasConceptScore W2549335396C107568181 @default.
- W2549335396 hasConceptScore W2549335396C111919701 @default.
- W2549335396 hasConceptScore W2549335396C119948110 @default.
- W2549335396 hasConceptScore W2549335396C120314980 @default.
- W2549335396 hasConceptScore W2549335396C126255220 @default.
- W2549335396 hasConceptScore W2549335396C127413603 @default.
- W2549335396 hasConceptScore W2549335396C127456818 @default.
- W2549335396 hasConceptScore W2549335396C127705205 @default.
- W2549335396 hasConceptScore W2549335396C149635348 @default.
- W2549335396 hasConceptScore W2549335396C200601418 @default.
- W2549335396 hasConceptScore W2549335396C206729178 @default.
- W2549335396 hasConceptScore W2549335396C2780505938 @default.
- W2549335396 hasConceptScore W2549335396C31258907 @default.
- W2549335396 hasConceptScore W2549335396C31689143 @default.
- W2549335396 hasConceptScore W2549335396C33923547 @default.
- W2549335396 hasConceptScore W2549335396C41008148 @default.
- W2549335396 hasConceptScore W2549335396C5119721 @default.
- W2549335396 hasConceptScore W2549335396C55416958 @default.
- W2549335396 hasConceptScore W2549335396C74172769 @default.
- W2549335396 hasLocation W25493353961 @default.
- W2549335396 hasOpenAccess W2549335396 @default.
- W2549335396 hasPrimaryLocation W25493353961 @default.
- W2549335396 hasRelatedWork W100566344 @default.
- W2549335396 hasRelatedWork W140492576 @default.
- W2549335396 hasRelatedWork W1525770743 @default.
- W2549335396 hasRelatedWork W1554185346 @default.
- W2549335396 hasRelatedWork W1605360062 @default.
- W2549335396 hasRelatedWork W2107438255 @default.
- W2549335396 hasRelatedWork W2119816669 @default.
- W2549335396 hasRelatedWork W2281193709 @default.
- W2549335396 hasRelatedWork W2373101223 @default.
- W2549335396 hasRelatedWork W2614944019 @default.
- W2549335396 hasRelatedWork W2885087577 @default.
- W2549335396 hasRelatedWork W2893236605 @default.
- W2549335396 hasRelatedWork W2918657738 @default.
- W2549335396 hasRelatedWork W2975266424 @default.
- W2549335396 hasRelatedWork W3009316446 @default.
- W2549335396 hasRelatedWork W3089739253 @default.
- W2549335396 hasRelatedWork W3137348415 @default.
- W2549335396 hasRelatedWork W3189525123 @default.
- W2549335396 hasRelatedWork W3205961405 @default.