Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549349626> ?p ?o ?g. }
- W2549349626 endingPage "6" @default.
- W2549349626 startingPage "1" @default.
- W2549349626 abstract "Deep learning, especially in the form of convolutional neural networks (CNNs), has triggered substantial improvements in computer vision and related fields in recent years. This progress is attributed to the shift from designing features and subsequent individual sub-systems towards learning features and recognition systems end to end from nearly unprocessed data. For speaker clustering, however, it is still common to use handcrafted processing chains such as MFCC features and GMM-based models. In this paper, we use simple spectrograms as input to a CNN and study the optimal design of those networks for speaker identification and clustering. Furthermore, we elaborate on the question how to transfer a network, trained for speaker identification, to speaker clustering. We demonstrate our approach on the well known TIMIT dataset, achieving results comparable with the state of the art-without the need for handcrafted features." @default.
- W2549349626 created "2016-11-30" @default.
- W2549349626 creator A5002439013 @default.
- W2549349626 creator A5021570324 @default.
- W2549349626 creator A5030325640 @default.
- W2549349626 creator A5078032390 @default.
- W2549349626 date "2016-09-01" @default.
- W2549349626 modified "2023-09-30" @default.
- W2549349626 title "Speaker identification and clustering using convolutional neural networks" @default.
- W2549349626 cites W102958777 @default.
- W2549349626 cites W1165382972 @default.
- W2549349626 cites W127492317 @default.
- W2549349626 cites W131293899 @default.
- W2549349626 cites W1538131130 @default.
- W2549349626 cites W1665214252 @default.
- W2549349626 cites W2010114458 @default.
- W2549349626 cites W2029687556 @default.
- W2549349626 cites W2041823554 @default.
- W2549349626 cites W2059652044 @default.
- W2549349626 cites W2069642050 @default.
- W2549349626 cites W2069883713 @default.
- W2549349626 cites W2107789863 @default.
- W2549349626 cites W2108636611 @default.
- W2549349626 cites W2109761419 @default.
- W2549349626 cites W2112796928 @default.
- W2549349626 cites W2150769028 @default.
- W2549349626 cites W2153579005 @default.
- W2549349626 cites W2153842971 @default.
- W2549349626 cites W2156255174 @default.
- W2549349626 cites W2163605009 @default.
- W2549349626 cites W2187089797 @default.
- W2549349626 cites W2188183693 @default.
- W2549349626 cites W2191779130 @default.
- W2549349626 cites W2198484938 @default.
- W2549349626 cites W2236062296 @default.
- W2549349626 cites W2403686171 @default.
- W2549349626 cites W2405476549 @default.
- W2549349626 cites W3147161844 @default.
- W2549349626 doi "https://doi.org/10.21256/zhaw-3761" @default.
- W2549349626 hasPublicationYear "2016" @default.
- W2549349626 type Work @default.
- W2549349626 sameAs 2549349626 @default.
- W2549349626 citedByCount "11" @default.
- W2549349626 countsByYear W25493496262017 @default.
- W2549349626 countsByYear W25493496262018 @default.
- W2549349626 countsByYear W25493496262019 @default.
- W2549349626 countsByYear W25493496262020 @default.
- W2549349626 countsByYear W25493496262021 @default.
- W2549349626 crossrefType "proceedings-article" @default.
- W2549349626 hasAuthorship W2549349626A5002439013 @default.
- W2549349626 hasAuthorship W2549349626A5021570324 @default.
- W2549349626 hasAuthorship W2549349626A5030325640 @default.
- W2549349626 hasAuthorship W2549349626A5078032390 @default.
- W2549349626 hasConcept C108583219 @default.
- W2549349626 hasConcept C116834253 @default.
- W2549349626 hasConcept C119857082 @default.
- W2549349626 hasConcept C133892786 @default.
- W2549349626 hasConcept C138885662 @default.
- W2549349626 hasConcept C151989614 @default.
- W2549349626 hasConcept C153180895 @default.
- W2549349626 hasConcept C154945302 @default.
- W2549349626 hasConcept C23224414 @default.
- W2549349626 hasConcept C2776401178 @default.
- W2549349626 hasConcept C2778724510 @default.
- W2549349626 hasConcept C28490314 @default.
- W2549349626 hasConcept C41008148 @default.
- W2549349626 hasConcept C41895202 @default.
- W2549349626 hasConcept C45273575 @default.
- W2549349626 hasConcept C50644808 @default.
- W2549349626 hasConcept C52622490 @default.
- W2549349626 hasConcept C59822182 @default.
- W2549349626 hasConcept C73555534 @default.
- W2549349626 hasConcept C81363708 @default.
- W2549349626 hasConcept C86803240 @default.
- W2549349626 hasConceptScore W2549349626C108583219 @default.
- W2549349626 hasConceptScore W2549349626C116834253 @default.
- W2549349626 hasConceptScore W2549349626C119857082 @default.
- W2549349626 hasConceptScore W2549349626C133892786 @default.
- W2549349626 hasConceptScore W2549349626C138885662 @default.
- W2549349626 hasConceptScore W2549349626C151989614 @default.
- W2549349626 hasConceptScore W2549349626C153180895 @default.
- W2549349626 hasConceptScore W2549349626C154945302 @default.
- W2549349626 hasConceptScore W2549349626C23224414 @default.
- W2549349626 hasConceptScore W2549349626C2776401178 @default.
- W2549349626 hasConceptScore W2549349626C2778724510 @default.
- W2549349626 hasConceptScore W2549349626C28490314 @default.
- W2549349626 hasConceptScore W2549349626C41008148 @default.
- W2549349626 hasConceptScore W2549349626C41895202 @default.
- W2549349626 hasConceptScore W2549349626C45273575 @default.
- W2549349626 hasConceptScore W2549349626C50644808 @default.
- W2549349626 hasConceptScore W2549349626C52622490 @default.
- W2549349626 hasConceptScore W2549349626C59822182 @default.
- W2549349626 hasConceptScore W2549349626C73555534 @default.
- W2549349626 hasConceptScore W2549349626C81363708 @default.
- W2549349626 hasConceptScore W2549349626C86803240 @default.
- W2549349626 hasLocation W25493496261 @default.
- W2549349626 hasOpenAccess W2549349626 @default.
- W2549349626 hasPrimaryLocation W25493496261 @default.