Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549449189> ?p ?o ?g. }
- W2549449189 endingPage "156" @default.
- W2549449189 startingPage "156" @default.
- W2549449189 abstract "We developed a flare prediction model using machine learning, which is optimized to predict the maximum class of flares occurring in the following 24 h. Machine learning is used to devise algorithms that can learn from and make decisions on a huge amount of data. We used solar observation data during the period 2010-2015, such as vector magnetogram, ultraviolet (UV) emission, and soft X-ray emission taken by the Solar Dynamics Observatory and the Geostationary Operational Environmental Satellite. We detected active regions from the full-disk magnetogram, from which 60 features were extracted with their time differentials, including magnetic neutral lines, the current helicity, the UV brightening, and the flare history. After standardizing the feature database, we fully shuffled and randomly separated it into two for training and testing. To investigate which algorithm is best for flare prediction, we compared three machine learning algorithms: the support vector machine (SVM), k-nearest neighbors (k-NN), and extremely randomized trees (ERT). The prediction score, the true skill statistic (TSS), was higher than 0.9 with a fully shuffled dataset, which is higher than that for human forecasts. It was found that k-NN has the highest performance among the three algorithms. The ranking of the feature importance showed that the previous flare activity is most effective, followed by the length of magnetic neutral lines, the unsigned magnetic flux, the area of UV brightening, and the time differentials of features over 24 h, all of which are strongly correlated with the flux emergence dynamics in an active region." @default.
- W2549449189 created "2016-11-30" @default.
- W2549449189 creator A5005743044 @default.
- W2549449189 creator A5033418965 @default.
- W2549449189 creator A5033744547 @default.
- W2549449189 creator A5034509261 @default.
- W2549449189 creator A5038206853 @default.
- W2549449189 creator A5085470186 @default.
- W2549449189 date "2017-01-25" @default.
- W2549449189 modified "2023-10-17" @default.
- W2549449189 title "Solar Flare Prediction Model with Three Machine-learning Algorithms using Ultraviolet Brightening and Vector Magnetograms" @default.
- W2549449189 cites W1492184933 @default.
- W2549449189 cites W1619432394 @default.
- W2549449189 cites W1663132993 @default.
- W2549449189 cites W1805271724 @default.
- W2549449189 cites W1891240508 @default.
- W2549449189 cites W1931514541 @default.
- W2549449189 cites W1959998928 @default.
- W2549449189 cites W1966438712 @default.
- W2549449189 cites W1966973332 @default.
- W2549449189 cites W1968889950 @default.
- W2549449189 cites W1971172452 @default.
- W2549449189 cites W1980740218 @default.
- W2549449189 cites W1996315656 @default.
- W2549449189 cites W2003328568 @default.
- W2549449189 cites W2010544740 @default.
- W2549449189 cites W2014209718 @default.
- W2549449189 cites W2017458296 @default.
- W2549449189 cites W2018245149 @default.
- W2549449189 cites W2018597042 @default.
- W2549449189 cites W2020838667 @default.
- W2549449189 cites W2022075238 @default.
- W2549449189 cites W2024356516 @default.
- W2549449189 cites W2029038480 @default.
- W2549449189 cites W2029424182 @default.
- W2549449189 cites W2038461624 @default.
- W2549449189 cites W2039029218 @default.
- W2549449189 cites W2055916162 @default.
- W2549449189 cites W2056132907 @default.
- W2549449189 cites W2060814203 @default.
- W2549449189 cites W2069132043 @default.
- W2549449189 cites W2072093504 @default.
- W2549449189 cites W2085108230 @default.
- W2549449189 cites W2087347434 @default.
- W2549449189 cites W2094483427 @default.
- W2549449189 cites W2098877029 @default.
- W2549449189 cites W2102042772 @default.
- W2549449189 cites W2110362175 @default.
- W2549449189 cites W2111078819 @default.
- W2549449189 cites W2113146587 @default.
- W2549449189 cites W2113534407 @default.
- W2549449189 cites W2124410915 @default.
- W2549449189 cites W2136911043 @default.
- W2549449189 cites W2139739246 @default.
- W2549449189 cites W2142234851 @default.
- W2549449189 cites W2144250641 @default.
- W2549449189 cites W2146967864 @default.
- W2549449189 cites W2156733094 @default.
- W2549449189 cites W2168264252 @default.
- W2549449189 cites W2509145218 @default.
- W2549449189 cites W2523658438 @default.
- W2549449189 cites W2787894218 @default.
- W2549449189 cites W2911964244 @default.
- W2549449189 cites W3007874947 @default.
- W2549449189 cites W3097986603 @default.
- W2549449189 cites W3101267322 @default.
- W2549449189 cites W3101385842 @default.
- W2549449189 cites W3102688741 @default.
- W2549449189 cites W3102780218 @default.
- W2549449189 cites W3103384398 @default.
- W2549449189 cites W3105741355 @default.
- W2549449189 doi "https://doi.org/10.3847/1538-4357/835/2/156" @default.
- W2549449189 hasPublicationYear "2017" @default.
- W2549449189 type Work @default.
- W2549449189 sameAs 2549449189 @default.
- W2549449189 citedByCount "108" @default.
- W2549449189 countsByYear W25494491892017 @default.
- W2549449189 countsByYear W25494491892018 @default.
- W2549449189 countsByYear W25494491892019 @default.
- W2549449189 countsByYear W25494491892020 @default.
- W2549449189 countsByYear W25494491892021 @default.
- W2549449189 countsByYear W25494491892022 @default.
- W2549449189 countsByYear W25494491892023 @default.
- W2549449189 crossrefType "journal-article" @default.
- W2549449189 hasAuthorship W2549449189A5005743044 @default.
- W2549449189 hasAuthorship W2549449189A5033418965 @default.
- W2549449189 hasAuthorship W2549449189A5033744547 @default.
- W2549449189 hasAuthorship W2549449189A5034509261 @default.
- W2549449189 hasAuthorship W2549449189A5038206853 @default.
- W2549449189 hasAuthorship W2549449189A5085470186 @default.
- W2549449189 hasBestOaLocation W25494491891 @default.
- W2549449189 hasConcept C104110773 @default.
- W2549449189 hasConcept C11413529 @default.
- W2549449189 hasConcept C115260700 @default.
- W2549449189 hasConcept C119857082 @default.
- W2549449189 hasConcept C121332964 @default.
- W2549449189 hasConcept C12267149 @default.
- W2549449189 hasConcept C1276947 @default.