Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549449321> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2549449321 endingPage "19" @default.
- W2549449321 startingPage "9" @default.
- W2549449321 abstract "Accurate estimates of air demand are critical when addressing the cavitation phenomenon in bottom outlet conduits of dams. In the present study, this accuracy was evaluated for air demand estimation models using gene expression programming (GEP), classification tree methods [including boosted regression trees (BRT) and random forest (RF) algorithms], and empirical relationships. Using k-fold cross validation and drawing on data from 6 dams, two different air-demand-related parameters were estimated (aerator air discharge demand and aeration coefficient) and the estimation accuracy was assessed using the Nash-Sutcliffe (NS) efficiency and other statistics. Outperforming the other models, the GEP model performed well in estimating aerator air demand (NS =0.674) and the aeration coefficient (NS =0.489). Moreover, on average, the GEP model showed 45% and 12% improvements in aeration coefficient estimation accuracy over empirical relationships and decision tree methods, respectively. Finally, in the function finding phase, the derived mathematical models were presented as non-linear equations to estimate the air demand of aerator and aeration coefficients using a non-linear relation derived from the GEP model." @default.
- W2549449321 created "2016-11-30" @default.
- W2549449321 creator A5012334113 @default.
- W2549449321 creator A5015639176 @default.
- W2549449321 creator A5043935498 @default.
- W2549449321 creator A5080922026 @default.
- W2549449321 date "2017-04-01" @default.
- W2549449321 modified "2023-09-27" @default.
- W2549449321 title "Estimating the aeration coefficient and air demand in bottom outlet conduits of dams using GEP and decision tree methods" @default.
- W2549449321 cites W110181068 @default.
- W2549449321 cites W1529146523 @default.
- W2549449321 cites W18678914 @default.
- W2549449321 cites W1976800132 @default.
- W2549449321 cites W1992359118 @default.
- W2549449321 cites W1997902957 @default.
- W2549449321 cites W2002646960 @default.
- W2549449321 cites W2011287807 @default.
- W2549449321 cites W2015258805 @default.
- W2549449321 cites W2026302091 @default.
- W2549449321 cites W2038780909 @default.
- W2549449321 cites W2045952723 @default.
- W2549449321 cites W2046884547 @default.
- W2549449321 cites W2051877213 @default.
- W2549449321 cites W2083742543 @default.
- W2549449321 cites W2095803840 @default.
- W2549449321 cites W2124512150 @default.
- W2549449321 cites W2135695572 @default.
- W2549449321 cites W2177299793 @default.
- W2549449321 cites W2208877981 @default.
- W2549449321 cites W2911964244 @default.
- W2549449321 cites W349796544 @default.
- W2549449321 cites W771428260 @default.
- W2549449321 doi "https://doi.org/10.1016/j.flowmeasinst.2016.11.004" @default.
- W2549449321 hasPublicationYear "2017" @default.
- W2549449321 type Work @default.
- W2549449321 sameAs 2549449321 @default.
- W2549449321 citedByCount "16" @default.
- W2549449321 countsByYear W25494493212017 @default.
- W2549449321 countsByYear W25494493212018 @default.
- W2549449321 countsByYear W25494493212019 @default.
- W2549449321 countsByYear W25494493212020 @default.
- W2549449321 countsByYear W25494493212021 @default.
- W2549449321 countsByYear W25494493212022 @default.
- W2549449321 crossrefType "journal-article" @default.
- W2549449321 hasAuthorship W2549449321A5012334113 @default.
- W2549449321 hasAuthorship W2549449321A5015639176 @default.
- W2549449321 hasAuthorship W2549449321A5043935498 @default.
- W2549449321 hasAuthorship W2549449321A5080922026 @default.
- W2549449321 hasConcept C105795698 @default.
- W2549449321 hasConcept C113174947 @default.
- W2549449321 hasConcept C124101348 @default.
- W2549449321 hasConcept C127413603 @default.
- W2549449321 hasConcept C128990827 @default.
- W2549449321 hasConcept C134306372 @default.
- W2549449321 hasConcept C33923547 @default.
- W2549449321 hasConcept C39432304 @default.
- W2549449321 hasConcept C41008148 @default.
- W2549449321 hasConcept C48921125 @default.
- W2549449321 hasConcept C548081761 @default.
- W2549449321 hasConcept C84525736 @default.
- W2549449321 hasConcept C86922832 @default.
- W2549449321 hasConceptScore W2549449321C105795698 @default.
- W2549449321 hasConceptScore W2549449321C113174947 @default.
- W2549449321 hasConceptScore W2549449321C124101348 @default.
- W2549449321 hasConceptScore W2549449321C127413603 @default.
- W2549449321 hasConceptScore W2549449321C128990827 @default.
- W2549449321 hasConceptScore W2549449321C134306372 @default.
- W2549449321 hasConceptScore W2549449321C33923547 @default.
- W2549449321 hasConceptScore W2549449321C39432304 @default.
- W2549449321 hasConceptScore W2549449321C41008148 @default.
- W2549449321 hasConceptScore W2549449321C48921125 @default.
- W2549449321 hasConceptScore W2549449321C548081761 @default.
- W2549449321 hasConceptScore W2549449321C84525736 @default.
- W2549449321 hasConceptScore W2549449321C86922832 @default.
- W2549449321 hasLocation W25494493211 @default.
- W2549449321 hasOpenAccess W2549449321 @default.
- W2549449321 hasPrimaryLocation W25494493211 @default.
- W2549449321 hasRelatedWork W2260233515 @default.
- W2549449321 hasRelatedWork W2622817342 @default.
- W2549449321 hasRelatedWork W2624501724 @default.
- W2549449321 hasRelatedWork W2979774498 @default.
- W2549449321 hasRelatedWork W3017119374 @default.
- W2549449321 hasRelatedWork W4291492812 @default.
- W2549449321 hasRelatedWork W4312463433 @default.
- W2549449321 hasRelatedWork W4317494332 @default.
- W2549449321 hasRelatedWork W4319731084 @default.
- W2549449321 hasRelatedWork W2550003787 @default.
- W2549449321 hasVolume "54" @default.
- W2549449321 isParatext "false" @default.
- W2549449321 isRetracted "false" @default.
- W2549449321 magId "2549449321" @default.
- W2549449321 workType "article" @default.