Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549664578> ?p ?o ?g. }
- W2549664578 abstract "Regression is one of the most basic problems in machine learning. In big data era, for regression problem, extreme learning machine (ELM) can get better generalization performance and much fast training speed. However, the enlarging volume of dataset for training makes regression by ELM a challenging task, and it is hard to finish the training in a reasonable time or it will be out of memory. In this paper, through analyzing the theory of ELM, a MapReduce-Based ELM method is proposed. Under the MapReduce framework, ELM submodels are trained in every slave node parallelly. A combination method is designed to combine all the submodels as a complete model. The experiment results demonstrate that the MapReduce-Based ELM can efficient process big dataset on commodity hardware and it has a good performance on speedup under the cloud environment where the dataset is stored as data block in different machines." @default.
- W2549664578 created "2016-11-30" @default.
- W2549664578 creator A5043972330 @default.
- W2549664578 creator A5052022256 @default.
- W2549664578 creator A5072031992 @default.
- W2549664578 creator A5079170742 @default.
- W2549664578 creator A5079445425 @default.
- W2549664578 date "2016-01-01" @default.
- W2549664578 modified "2023-09-22" @default.
- W2549664578 title "A MapReduce-Based ELM for Regression in Big Data" @default.
- W2549664578 cites W1124422431 @default.
- W2549664578 cites W1181348626 @default.
- W2549664578 cites W1834667845 @default.
- W2549664578 cites W1972977357 @default.
- W2549664578 cites W1990938413 @default.
- W2549664578 cites W2029084939 @default.
- W2549664578 cites W2043228294 @default.
- W2549664578 cites W2047431064 @default.
- W2549664578 cites W2055743332 @default.
- W2549664578 cites W2111072639 @default.
- W2549664578 cites W2168621536 @default.
- W2549664578 cites W2227948929 @default.
- W2549664578 cites W2994602700 @default.
- W2549664578 cites W4238584892 @default.
- W2549664578 cites W1978638095 @default.
- W2549664578 doi "https://doi.org/10.1007/978-3-319-46257-8_18" @default.
- W2549664578 hasPublicationYear "2016" @default.
- W2549664578 type Work @default.
- W2549664578 sameAs 2549664578 @default.
- W2549664578 citedByCount "3" @default.
- W2549664578 countsByYear W25496645782019 @default.
- W2549664578 countsByYear W25496645782020 @default.
- W2549664578 countsByYear W25496645782021 @default.
- W2549664578 crossrefType "book-chapter" @default.
- W2549664578 hasAuthorship W2549664578A5043972330 @default.
- W2549664578 hasAuthorship W2549664578A5052022256 @default.
- W2549664578 hasAuthorship W2549664578A5072031992 @default.
- W2549664578 hasAuthorship W2549664578A5079170742 @default.
- W2549664578 hasAuthorship W2549664578A5079445425 @default.
- W2549664578 hasConcept C11171543 @default.
- W2549664578 hasConcept C111919701 @default.
- W2549664578 hasConcept C119857082 @default.
- W2549664578 hasConcept C124101348 @default.
- W2549664578 hasConcept C127413603 @default.
- W2549664578 hasConcept C134306372 @default.
- W2549664578 hasConcept C154945302 @default.
- W2549664578 hasConcept C15744967 @default.
- W2549664578 hasConcept C162324750 @default.
- W2549664578 hasConcept C173608175 @default.
- W2549664578 hasConcept C177148314 @default.
- W2549664578 hasConcept C187736073 @default.
- W2549664578 hasConcept C2524010 @default.
- W2549664578 hasConcept C2777210771 @default.
- W2549664578 hasConcept C2780150128 @default.
- W2549664578 hasConcept C2780451532 @default.
- W2549664578 hasConcept C33923547 @default.
- W2549664578 hasConcept C41008148 @default.
- W2549664578 hasConcept C50644808 @default.
- W2549664578 hasConcept C62611344 @default.
- W2549664578 hasConcept C66938386 @default.
- W2549664578 hasConcept C68339613 @default.
- W2549664578 hasConcept C75684735 @default.
- W2549664578 hasConcept C83546350 @default.
- W2549664578 hasConcept C98045186 @default.
- W2549664578 hasConceptScore W2549664578C11171543 @default.
- W2549664578 hasConceptScore W2549664578C111919701 @default.
- W2549664578 hasConceptScore W2549664578C119857082 @default.
- W2549664578 hasConceptScore W2549664578C124101348 @default.
- W2549664578 hasConceptScore W2549664578C127413603 @default.
- W2549664578 hasConceptScore W2549664578C134306372 @default.
- W2549664578 hasConceptScore W2549664578C154945302 @default.
- W2549664578 hasConceptScore W2549664578C15744967 @default.
- W2549664578 hasConceptScore W2549664578C162324750 @default.
- W2549664578 hasConceptScore W2549664578C173608175 @default.
- W2549664578 hasConceptScore W2549664578C177148314 @default.
- W2549664578 hasConceptScore W2549664578C187736073 @default.
- W2549664578 hasConceptScore W2549664578C2524010 @default.
- W2549664578 hasConceptScore W2549664578C2777210771 @default.
- W2549664578 hasConceptScore W2549664578C2780150128 @default.
- W2549664578 hasConceptScore W2549664578C2780451532 @default.
- W2549664578 hasConceptScore W2549664578C33923547 @default.
- W2549664578 hasConceptScore W2549664578C41008148 @default.
- W2549664578 hasConceptScore W2549664578C50644808 @default.
- W2549664578 hasConceptScore W2549664578C62611344 @default.
- W2549664578 hasConceptScore W2549664578C66938386 @default.
- W2549664578 hasConceptScore W2549664578C68339613 @default.
- W2549664578 hasConceptScore W2549664578C75684735 @default.
- W2549664578 hasConceptScore W2549664578C83546350 @default.
- W2549664578 hasConceptScore W2549664578C98045186 @default.
- W2549664578 hasLocation W25496645781 @default.
- W2549664578 hasOpenAccess W2549664578 @default.
- W2549664578 hasPrimaryLocation W25496645781 @default.
- W2549664578 hasRelatedWork W1899690672 @default.
- W2549664578 hasRelatedWork W1975291854 @default.
- W2549664578 hasRelatedWork W2001325299 @default.
- W2549664578 hasRelatedWork W2039277099 @default.
- W2549664578 hasRelatedWork W2044418004 @default.
- W2549664578 hasRelatedWork W2172034491 @default.
- W2549664578 hasRelatedWork W2188513145 @default.
- W2549664578 hasRelatedWork W2192928216 @default.