Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549738792> ?p ?o ?g. }
- W2549738792 endingPage "671" @default.
- W2549738792 startingPage "649" @default.
- W2549738792 abstract "The objective of this study is to attempt a new soft computing approach for assessment of landslide susceptibility in the Luc Yen district, Yen Bai province (Viet Nam) using a novel classifier ensemble model of Naïve Bayes and Rotation Forest. First, history of 95 landslide locations was identified byfield investigations and interpretation of aerial photos. Also, the total ten landslide causal factors were selected (slope, aspect, elevation, curvature, lithology, land use, distance to roads, distance to rivers, distance to faults, and rainfall) to evaluate the spatial relationship with landslide occurrences. Information Gain technique is carried out to quantify the predictive capability of these factors. Second, landslide susceptibility assessment was carried out utilizing the novel classifier ensemble model. Finally, the performance of landslide model was validated using receiver operating characteristic curve technique, and statistical index-based evaluations. The novel classifier ensemble model indicates high prediction capability (AUC = 0.846) and relatively high accuracy (ACC = 78.77%). The study reveals that this model performs well in comparison to the other landslide models such as AdaBoost, Bagging, MultiBoost, and Random Forest. Overall, the novel classifier ensemble model is a promising method that could be used for landslide susceptibility assessment." @default.
- W2549738792 created "2016-11-30" @default.
- W2549738792 creator A5004110680 @default.
- W2549738792 creator A5022764252 @default.
- W2549738792 creator A5029279492 @default.
- W2549738792 creator A5029814958 @default.
- W2549738792 creator A5042934801 @default.
- W2549738792 creator A5051780339 @default.
- W2549738792 creator A5087870886 @default.
- W2549738792 date "2016-11-21" @default.
- W2549738792 modified "2023-10-14" @default.
- W2549738792 title "A novel ensemble classifier of rotation forest and Naïve Bayer for landslide susceptibility assessment at the Luc Yen district, Yen Bai Province (Viet Nam) using GIS" @default.
- W2549738792 cites W1490753825 @default.
- W2549738792 cites W1520812622 @default.
- W2549738792 cites W1685219623 @default.
- W2549738792 cites W1699715884 @default.
- W2549738792 cites W1817561967 @default.
- W2549738792 cites W183366287 @default.
- W2549738792 cites W1970136111 @default.
- W2549738792 cites W1971095756 @default.
- W2549738792 cites W1971760160 @default.
- W2549738792 cites W1982948123 @default.
- W2549738792 cites W1983631475 @default.
- W2549738792 cites W1983676031 @default.
- W2549738792 cites W1985615731 @default.
- W2549738792 cites W1987342969 @default.
- W2549738792 cites W1988790447 @default.
- W2549738792 cites W1990653740 @default.
- W2549738792 cites W1996757473 @default.
- W2549738792 cites W1997199861 @default.
- W2549738792 cites W2004659921 @default.
- W2549738792 cites W2006968845 @default.
- W2549738792 cites W2015916203 @default.
- W2549738792 cites W2017145427 @default.
- W2549738792 cites W2017388337 @default.
- W2549738792 cites W2021039490 @default.
- W2549738792 cites W2022724931 @default.
- W2549738792 cites W2024046085 @default.
- W2549738792 cites W2035699211 @default.
- W2549738792 cites W2035830726 @default.
- W2549738792 cites W2036881582 @default.
- W2549738792 cites W2040990873 @default.
- W2549738792 cites W2041461910 @default.
- W2549738792 cites W2042585650 @default.
- W2549738792 cites W2050599078 @default.
- W2549738792 cites W2054512946 @default.
- W2549738792 cites W2061759157 @default.
- W2549738792 cites W2065949495 @default.
- W2549738792 cites W2069703366 @default.
- W2549738792 cites W2071068479 @default.
- W2549738792 cites W2082376913 @default.
- W2549738792 cites W2088730795 @default.
- W2549738792 cites W2091455951 @default.
- W2549738792 cites W2093703725 @default.
- W2549738792 cites W2108949035 @default.
- W2549738792 cites W2113746882 @default.
- W2549738792 cites W2130627644 @default.
- W2549738792 cites W2140785063 @default.
- W2549738792 cites W2144420447 @default.
- W2549738792 cites W2150757437 @default.
- W2549738792 cites W2154029090 @default.
- W2549738792 cites W2158698691 @default.
- W2549738792 cites W2167277498 @default.
- W2549738792 cites W2167531012 @default.
- W2549738792 cites W2336394836 @default.
- W2549738792 cites W2478414316 @default.
- W2549738792 cites W2487087946 @default.
- W2549738792 cites W2489814317 @default.
- W2549738792 cites W2549738792 @default.
- W2549738792 cites W2806372340 @default.
- W2549738792 cites W2911964244 @default.
- W2549738792 cites W4212883601 @default.
- W2549738792 cites W4244781008 @default.
- W2549738792 cites W4245979949 @default.
- W2549738792 cites W4248018214 @default.
- W2549738792 cites W4249247926 @default.
- W2549738792 cites W4301006716 @default.
- W2549738792 cites W67375668 @default.
- W2549738792 cites W978749975 @default.
- W2549738792 doi "https://doi.org/10.1080/19475705.2016.1255667" @default.
- W2549738792 hasPublicationYear "2016" @default.
- W2549738792 type Work @default.
- W2549738792 sameAs 2549738792 @default.
- W2549738792 citedByCount "76" @default.
- W2549738792 countsByYear W25497387922016 @default.
- W2549738792 countsByYear W25497387922017 @default.
- W2549738792 countsByYear W25497387922018 @default.
- W2549738792 countsByYear W25497387922019 @default.
- W2549738792 countsByYear W25497387922020 @default.
- W2549738792 countsByYear W25497387922021 @default.
- W2549738792 countsByYear W25497387922022 @default.
- W2549738792 countsByYear W25497387922023 @default.
- W2549738792 crossrefType "journal-article" @default.
- W2549738792 hasAuthorship W2549738792A5004110680 @default.
- W2549738792 hasAuthorship W2549738792A5022764252 @default.
- W2549738792 hasAuthorship W2549738792A5029279492 @default.
- W2549738792 hasAuthorship W2549738792A5029814958 @default.
- W2549738792 hasAuthorship W2549738792A5042934801 @default.