Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549862511> ?p ?o ?g. }
- W2549862511 endingPage "967" @default.
- W2549862511 startingPage "954" @default.
- W2549862511 abstract "Abstract Spectral-based classification methods have gained increasing attention in hyperspectral imagery classification. Nevertheless, the spectral cannot fully represent the inherent spatial distribution of the imagery. In this paper, a spectral-spatial kernel-based method for hyperspectral imagery classification is proposed. Firstly, the spatial feature was extracted by using area median filtering (AMF). Secondly, the result of the AMF was used to construct spatial feature patch according to different window sizes. Finally, using the kernel technique, the spectral feature and the spatial feature were jointly used for the classification through a support vector machine (SVM) formulation. Therefore, for hyperspectral imagery classification, the proposed method was called spectral-spatial kernel-based support vector machine (SSF-SVM). To evaluate the proposed method, experiments are performed on three hyperspectral images. The experimental results show that an improvement is possible with the proposed technique in most of the real world classification problems." @default.
- W2549862511 created "2016-11-30" @default.
- W2549862511 creator A5027475930 @default.
- W2549862511 creator A5057886808 @default.
- W2549862511 creator A5091010251 @default.
- W2549862511 date "2017-02-01" @default.
- W2549862511 modified "2023-09-29" @default.
- W2549862511 title "A spectral-spatial kernel-based method for hyperspectral imagery classification" @default.
- W2549862511 cites W1972524915 @default.
- W2549862511 cites W1988048998 @default.
- W2549862511 cites W1995333990 @default.
- W2549862511 cites W1998030734 @default.
- W2549862511 cites W2001298023 @default.
- W2549862511 cites W2009286595 @default.
- W2549862511 cites W2012189377 @default.
- W2549862511 cites W2019143339 @default.
- W2549862511 cites W2030476695 @default.
- W2549862511 cites W2031823405 @default.
- W2549862511 cites W2036389990 @default.
- W2549862511 cites W2043665634 @default.
- W2549862511 cites W2045095960 @default.
- W2549862511 cites W2058795991 @default.
- W2549862511 cites W2070424424 @default.
- W2549862511 cites W2072843185 @default.
- W2549862511 cites W2078495963 @default.
- W2549862511 cites W2087263574 @default.
- W2549862511 cites W2091983493 @default.
- W2549862511 cites W2098057602 @default.
- W2549862511 cites W2104275258 @default.
- W2549862511 cites W2111787810 @default.
- W2549862511 cites W2114819256 @default.
- W2549862511 cites W2127199143 @default.
- W2549862511 cites W2131697388 @default.
- W2549862511 cites W2131864940 @default.
- W2549862511 cites W2142012908 @default.
- W2549862511 cites W2146611644 @default.
- W2549862511 cites W2148358298 @default.
- W2549862511 cites W2153409933 @default.
- W2549862511 cites W2159070926 @default.
- W2549862511 cites W2160662337 @default.
- W2549862511 cites W2164330327 @default.
- W2549862511 cites W2164437025 @default.
- W2549862511 cites W2100921418 @default.
- W2549862511 doi "https://doi.org/10.1016/j.asr.2016.11.006" @default.
- W2549862511 hasPublicationYear "2017" @default.
- W2549862511 type Work @default.
- W2549862511 sameAs 2549862511 @default.
- W2549862511 citedByCount "28" @default.
- W2549862511 countsByYear W25498625112017 @default.
- W2549862511 countsByYear W25498625112018 @default.
- W2549862511 countsByYear W25498625112019 @default.
- W2549862511 countsByYear W25498625112020 @default.
- W2549862511 countsByYear W25498625112021 @default.
- W2549862511 countsByYear W25498625112022 @default.
- W2549862511 countsByYear W25498625112023 @default.
- W2549862511 crossrefType "journal-article" @default.
- W2549862511 hasAuthorship W2549862511A5027475930 @default.
- W2549862511 hasAuthorship W2549862511A5057886808 @default.
- W2549862511 hasAuthorship W2549862511A5091010251 @default.
- W2549862511 hasConcept C114614502 @default.
- W2549862511 hasConcept C127313418 @default.
- W2549862511 hasConcept C153180895 @default.
- W2549862511 hasConcept C154945302 @default.
- W2549862511 hasConcept C159078339 @default.
- W2549862511 hasConcept C33923547 @default.
- W2549862511 hasConcept C41008148 @default.
- W2549862511 hasConcept C62649853 @default.
- W2549862511 hasConcept C74193536 @default.
- W2549862511 hasConcept C78660771 @default.
- W2549862511 hasConceptScore W2549862511C114614502 @default.
- W2549862511 hasConceptScore W2549862511C127313418 @default.
- W2549862511 hasConceptScore W2549862511C153180895 @default.
- W2549862511 hasConceptScore W2549862511C154945302 @default.
- W2549862511 hasConceptScore W2549862511C159078339 @default.
- W2549862511 hasConceptScore W2549862511C33923547 @default.
- W2549862511 hasConceptScore W2549862511C41008148 @default.
- W2549862511 hasConceptScore W2549862511C62649853 @default.
- W2549862511 hasConceptScore W2549862511C74193536 @default.
- W2549862511 hasConceptScore W2549862511C78660771 @default.
- W2549862511 hasFunder F4320327912 @default.
- W2549862511 hasIssue "4" @default.
- W2549862511 hasLocation W25498625111 @default.
- W2549862511 hasOpenAccess W2549862511 @default.
- W2549862511 hasPrimaryLocation W25498625111 @default.
- W2549862511 hasRelatedWork W1534071680 @default.
- W2549862511 hasRelatedWork W1869808405 @default.
- W2549862511 hasRelatedWork W2012055075 @default.
- W2549862511 hasRelatedWork W2018257962 @default.
- W2549862511 hasRelatedWork W2419625956 @default.
- W2549862511 hasRelatedWork W2765939201 @default.
- W2549862511 hasRelatedWork W2783789044 @default.
- W2549862511 hasRelatedWork W3167507564 @default.
- W2549862511 hasRelatedWork W3211035526 @default.
- W2549862511 hasRelatedWork W4291701050 @default.
- W2549862511 hasVolume "59" @default.
- W2549862511 isParatext "false" @default.
- W2549862511 isRetracted "false" @default.
- W2549862511 magId "2549862511" @default.