Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549949175> ?p ?o ?g. }
- W2549949175 endingPage "270" @default.
- W2549949175 startingPage "264" @default.
- W2549949175 abstract "Magnetic resonance imaging (MRI) has become key in the diagnosis and disease monitoring of patients with multiple sclerosis (MS). Both, T2 lesion load and Gadolinium (Gd) enhancing T1 lesions represent important endpoints in MS clinical trials by serving as a surrogate of clinical disease activity. T2- and fluid-attenuated inversion recovery (FLAIR) lesion quantification - largely due to methodological constraints – is still being performed manually or in a semi-automated fashion, although strong efforts have been made to allow automated quantitative lesion segmentation. In 2012, Schmidt and co-workers published an algorithm to be applied on FLAIR sequences. The aim of this study was to apply the Schmidt algorithm on an independent data set and compare automated segmentation to inter-rater variability of three independent, experienced raters. MRI data of 50 patients with RRMS were randomly selected from a larger pool of MS patients attending the MS Clinic at the Brain and Mind Centre, University of Sydney, Australia. MRIs were acquired on a 3.0T GE scanner (Discovery MR750, GE Medical Systems, Milwaukee, WI) using an 8 channel head coil. We determined T2-lesion load (total lesion volume and total lesion number) using three versions of an automated segmentation algorithm (Lesion growth algorithm (LGA) based on SPM8 or SPM12 and lesion prediction algorithm (LPA) based on SPM12) as first described by Schmidt et al. (2012). Additionally, manual segmentation was performed by three independent raters. We calculated inter-rater correlation coefficients (ICC) and dice coefficients (DC) for all possible pairwise comparisons. We found a strong correlation between manual and automated lesion segmentation based on LGA SPM8, regarding lesion volume (ICC = 0.958 and DC = 0.60) that was not statistically different from the inter-rater correlation (ICC = 0.97 and DC = 0.66). Correlation between the two other algorithms (LGA SPM12 and LPA SPM12) and manual raters was weaker but still adequate (ICC = 0.927 and DC = 0.53 for LGA SPM12 and ICC = 0.949 and DC = 0.57 for LPA SPM12). Variability of both manual and automated segmentation was significantly higher regarding lesion numbers. Automated lesion volume quantification can be applied reliably on FLAIR data sets using the SPM based algorithm of Schmidt et al. and shows good agreement with manual segmentation." @default.
- W2549949175 created "2016-11-30" @default.
- W2549949175 creator A5008378889 @default.
- W2549949175 creator A5042866937 @default.
- W2549949175 creator A5047876493 @default.
- W2549949175 creator A5057079579 @default.
- W2549949175 creator A5057497769 @default.
- W2549949175 creator A5061993323 @default.
- W2549949175 creator A5071972650 @default.
- W2549949175 creator A5083946982 @default.
- W2549949175 date "2017-01-01" @default.
- W2549949175 modified "2023-10-18" @default.
- W2549949175 title "MRI FLAIR lesion segmentation in multiple sclerosis: Does automated segmentation hold up with manual annotation?" @default.
- W2549949175 cites W1515178147 @default.
- W2549949175 cites W1963801017 @default.
- W2549949175 cites W1965976393 @default.
- W2549949175 cites W1987869189 @default.
- W2549949175 cites W2014146052 @default.
- W2549949175 cites W2021204548 @default.
- W2549949175 cites W2027821762 @default.
- W2549949175 cites W2047440597 @default.
- W2549949175 cites W2047667601 @default.
- W2549949175 cites W2056291649 @default.
- W2549949175 cites W2062739854 @default.
- W2549949175 cites W2072308277 @default.
- W2549949175 cites W2102290518 @default.
- W2549949175 cites W2102848905 @default.
- W2549949175 cites W2116544624 @default.
- W2549949175 cites W2117494113 @default.
- W2549949175 cites W2122545833 @default.
- W2549949175 cites W2142577589 @default.
- W2549949175 cites W2148333046 @default.
- W2549949175 cites W2160099998 @default.
- W2549949175 cites W2161591846 @default.
- W2549949175 cites W2170750629 @default.
- W2549949175 cites W2172033920 @default.
- W2549949175 cites W266124145 @default.
- W2549949175 cites W3149634704 @default.
- W2549949175 cites W4211254511 @default.
- W2549949175 doi "https://doi.org/10.1016/j.nicl.2016.11.020" @default.
- W2549949175 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5175993" @default.
- W2549949175 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28018853" @default.
- W2549949175 hasPublicationYear "2017" @default.
- W2549949175 type Work @default.
- W2549949175 sameAs 2549949175 @default.
- W2549949175 citedByCount "82" @default.
- W2549949175 countsByYear W25499491752017 @default.
- W2549949175 countsByYear W25499491752018 @default.
- W2549949175 countsByYear W25499491752019 @default.
- W2549949175 countsByYear W25499491752020 @default.
- W2549949175 countsByYear W25499491752021 @default.
- W2549949175 countsByYear W25499491752022 @default.
- W2549949175 countsByYear W25499491752023 @default.
- W2549949175 crossrefType "journal-article" @default.
- W2549949175 hasAuthorship W2549949175A5008378889 @default.
- W2549949175 hasAuthorship W2549949175A5042866937 @default.
- W2549949175 hasAuthorship W2549949175A5047876493 @default.
- W2549949175 hasAuthorship W2549949175A5057079579 @default.
- W2549949175 hasAuthorship W2549949175A5057497769 @default.
- W2549949175 hasAuthorship W2549949175A5061993323 @default.
- W2549949175 hasAuthorship W2549949175A5071972650 @default.
- W2549949175 hasAuthorship W2549949175A5083946982 @default.
- W2549949175 hasBestOaLocation W25499491751 @default.
- W2549949175 hasConcept C101070640 @default.
- W2549949175 hasConcept C118552586 @default.
- W2549949175 hasConcept C124504099 @default.
- W2549949175 hasConcept C126838900 @default.
- W2549949175 hasConcept C142724271 @default.
- W2549949175 hasConcept C143409427 @default.
- W2549949175 hasConcept C154945302 @default.
- W2549949175 hasConcept C163892561 @default.
- W2549949175 hasConcept C2780640218 @default.
- W2549949175 hasConcept C2781156865 @default.
- W2549949175 hasConcept C2989005 @default.
- W2549949175 hasConcept C41008148 @default.
- W2549949175 hasConcept C54170458 @default.
- W2549949175 hasConcept C71924100 @default.
- W2549949175 hasConcept C89600930 @default.
- W2549949175 hasConceptScore W2549949175C101070640 @default.
- W2549949175 hasConceptScore W2549949175C118552586 @default.
- W2549949175 hasConceptScore W2549949175C124504099 @default.
- W2549949175 hasConceptScore W2549949175C126838900 @default.
- W2549949175 hasConceptScore W2549949175C142724271 @default.
- W2549949175 hasConceptScore W2549949175C143409427 @default.
- W2549949175 hasConceptScore W2549949175C154945302 @default.
- W2549949175 hasConceptScore W2549949175C163892561 @default.
- W2549949175 hasConceptScore W2549949175C2780640218 @default.
- W2549949175 hasConceptScore W2549949175C2781156865 @default.
- W2549949175 hasConceptScore W2549949175C2989005 @default.
- W2549949175 hasConceptScore W2549949175C41008148 @default.
- W2549949175 hasConceptScore W2549949175C54170458 @default.
- W2549949175 hasConceptScore W2549949175C71924100 @default.
- W2549949175 hasConceptScore W2549949175C89600930 @default.
- W2549949175 hasFunder F4320323874 @default.
- W2549949175 hasFunder F4320325166 @default.
- W2549949175 hasLocation W25499491751 @default.
- W2549949175 hasLocation W25499491752 @default.
- W2549949175 hasLocation W25499491753 @default.