Matches in SemOpenAlex for { <https://semopenalex.org/work/W2549984711> ?p ?o ?g. }
- W2549984711 endingPage "630" @default.
- W2549984711 startingPage "617" @default.
- W2549984711 abstract "We consider the problem of decentralized estimation of multiple joint sparse vectors by a network of nodes from locally acquired noisy and underdetermined linear measurements, when the cost of communication between the nodes is at a premium. We propose an iterative, decentralized Bayesian algorithm called fusion-based distributed sparse Bayesian learning (FB-DSBL) in which the nodes collaborate by exchanging highly compressed messages to learn a common joint sparsity inducing signal prior. The learnt signal prior is subsequently used by each node to compute the maximum a posteriori probability estimate of its respective sparse vector. Since the internode communication cost is expensive, the size of the messages exchanged between nodes is reduced substantially by exchanging only those local signal prior parameters which are associated with the nonzero support detected via multiple composite log-likelihood ratio tests. The average message size is empirically shown to be proportional to the information rate of the unknown vectors. The proposed sparse Bayesian learning (SBL)-based distributed algorithm allows nodes to exploit the underlying joint sparsity of the signals. In turn, this enables the nodes to recover sparse vectors with significantly lower number of measurements compared to the standalone SBL algorithm. The proposed algorithm is interpreted as a degenerate case of a distributed consensus-based stochastic approximation algorithm for finding a fixed point of a function, and its generalized version with Robbins-Monro-type iterations is also developed. Using Monte Carlo simulations, we demonstrate that the proposed FB-DSBL has superior mean squared error and support recovery performance compared to the existing decentralized algorithms with similar or higher communication complexity." @default.
- W2549984711 created "2016-11-30" @default.
- W2549984711 creator A5011671147 @default.
- W2549984711 creator A5052103809 @default.
- W2549984711 date "2017-09-01" @default.
- W2549984711 modified "2023-10-02" @default.
- W2549984711 title "Communication-Efficient Decentralized Sparse Bayesian Learning of Joint Sparse Signals" @default.
- W2549984711 cites W1979043738 @default.
- W2549984711 cites W1981359877 @default.
- W2549984711 cites W1994616650 @default.
- W2549984711 cites W2014933333 @default.
- W2549984711 cites W2024028641 @default.
- W2549984711 cites W2073225221 @default.
- W2549984711 cites W2078196449 @default.
- W2549984711 cites W2088499080 @default.
- W2549984711 cites W2092734317 @default.
- W2549984711 cites W2097751593 @default.
- W2549984711 cites W2106407813 @default.
- W2549984711 cites W2108924122 @default.
- W2549984711 cites W2115144080 @default.
- W2549984711 cites W2117592368 @default.
- W2549984711 cites W2123015311 @default.
- W2549984711 cites W2124662472 @default.
- W2549984711 cites W2144006746 @default.
- W2549984711 cites W2144059227 @default.
- W2549984711 cites W2146364557 @default.
- W2549984711 cites W2148154358 @default.
- W2549984711 cites W2152279006 @default.
- W2549984711 cites W2154828437 @default.
- W2549984711 cites W2162409952 @default.
- W2549984711 cites W2168123400 @default.
- W2549984711 cites W2171974671 @default.
- W2549984711 cites W2294732742 @default.
- W2549984711 cites W2963702538 @default.
- W2549984711 doi "https://doi.org/10.1109/tsipn.2016.2632041" @default.
- W2549984711 hasPublicationYear "2017" @default.
- W2549984711 type Work @default.
- W2549984711 sameAs 2549984711 @default.
- W2549984711 citedByCount "12" @default.
- W2549984711 countsByYear W25499847112018 @default.
- W2549984711 countsByYear W25499847112021 @default.
- W2549984711 countsByYear W25499847112022 @default.
- W2549984711 countsByYear W25499847112023 @default.
- W2549984711 crossrefType "journal-article" @default.
- W2549984711 hasAuthorship W2549984711A5011671147 @default.
- W2549984711 hasAuthorship W2549984711A5052103809 @default.
- W2549984711 hasConcept C105795698 @default.
- W2549984711 hasConcept C107673813 @default.
- W2549984711 hasConcept C11413529 @default.
- W2549984711 hasConcept C124851039 @default.
- W2549984711 hasConcept C126255220 @default.
- W2549984711 hasConcept C127413603 @default.
- W2549984711 hasConcept C154945302 @default.
- W2549984711 hasConcept C160234255 @default.
- W2549984711 hasConcept C177769412 @default.
- W2549984711 hasConcept C179690561 @default.
- W2549984711 hasConcept C199360897 @default.
- W2549984711 hasConcept C33923547 @default.
- W2549984711 hasConcept C41008148 @default.
- W2549984711 hasConcept C49781872 @default.
- W2549984711 hasConcept C62611344 @default.
- W2549984711 hasConcept C66938386 @default.
- W2549984711 hasConcept C854659 @default.
- W2549984711 hasConcept C9810830 @default.
- W2549984711 hasConceptScore W2549984711C105795698 @default.
- W2549984711 hasConceptScore W2549984711C107673813 @default.
- W2549984711 hasConceptScore W2549984711C11413529 @default.
- W2549984711 hasConceptScore W2549984711C124851039 @default.
- W2549984711 hasConceptScore W2549984711C126255220 @default.
- W2549984711 hasConceptScore W2549984711C127413603 @default.
- W2549984711 hasConceptScore W2549984711C154945302 @default.
- W2549984711 hasConceptScore W2549984711C160234255 @default.
- W2549984711 hasConceptScore W2549984711C177769412 @default.
- W2549984711 hasConceptScore W2549984711C179690561 @default.
- W2549984711 hasConceptScore W2549984711C199360897 @default.
- W2549984711 hasConceptScore W2549984711C33923547 @default.
- W2549984711 hasConceptScore W2549984711C41008148 @default.
- W2549984711 hasConceptScore W2549984711C49781872 @default.
- W2549984711 hasConceptScore W2549984711C62611344 @default.
- W2549984711 hasConceptScore W2549984711C66938386 @default.
- W2549984711 hasConceptScore W2549984711C854659 @default.
- W2549984711 hasConceptScore W2549984711C9810830 @default.
- W2549984711 hasIssue "3" @default.
- W2549984711 hasLocation W25499847111 @default.
- W2549984711 hasOpenAccess W2549984711 @default.
- W2549984711 hasPrimaryLocation W25499847111 @default.
- W2549984711 hasRelatedWork W1550931872 @default.
- W2549984711 hasRelatedWork W2067810487 @default.
- W2549984711 hasRelatedWork W2106867672 @default.
- W2549984711 hasRelatedWork W2150755939 @default.
- W2549984711 hasRelatedWork W2890416202 @default.
- W2549984711 hasRelatedWork W2943231088 @default.
- W2549984711 hasRelatedWork W2950616136 @default.
- W2549984711 hasRelatedWork W2953217260 @default.
- W2549984711 hasRelatedWork W2963414100 @default.
- W2549984711 hasRelatedWork W4283719299 @default.
- W2549984711 hasVolume "3" @default.
- W2549984711 isParatext "false" @default.