Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550075603> ?p ?o ?g. }
- W2550075603 endingPage "200" @default.
- W2550075603 startingPage "178" @default.
- W2550075603 abstract "The main focus in the analysis of pool or flow boiling in saturated or subcooled conditions is the basic understanding of the phase change process through the heat transfer and wall heat flux partitioning at the heated wall and the two-phase bubble behaviours in the bulk liquid as they migrate away from the heated wall. This paper reviews the work in this rapid developing area with special reference to modelling nucleate boiling of cryogenic liquids in the context of computational fluid dynamics and associated theoretical developments. The partitioning of the wall heat flux at the heated wall into three components – single-phase convection, transient conduction and evaporation – remains the most popular mechanistic approach in predicting the heat transfer process during boiling. Nevertheless, the respective wall heat flux components generally require the determination of the active nucleation site density, bubble departure diameter and nucleation frequency, which are crucial to the proper prediction of the heat transfer process. Numerous empirical correlations presented in this paper have been developed to ascertain these three important parameters with some degree of success. Albeit the simplicity of empirical correlations, they remain applicable to only a narrow range of flow conditions. In order to extend the wall heat flux partitioning approach to a wider range of flow conditions, the fractal model proposed for the active nucleation site density, force balance model for bubble departing from the cavity and bubble lifting off from the heated wall and evaluation of nucleation frequency based on fundamental theory depict the many enhancements that can improve the mechanistic model predictions. The macroscopic consideration of the two-phase boiling in the bulk liquid via the two-fluid model represents the most effective continuum approach in predicting the volume fraction and velocity distributions of each phase. Nevertheless, the interfacial mass, momentum and energy exchange terms that appear in the transport equations generally require the determination of the Sauter mean diameter or interfacial area concentration, which strongly governs the fluid flow and heat transfer in the bulk liquid. In order to accommodate the dynamically changing bubble sizes that are prevalent in the bulk liquid, the mechanistic approach based on the population balance model allows the appropriate prediction of local distributions of Sauter mean diameter or interfacial area concentration, which in turn can improve the predictions of the interfacial mass, momentum and energy exchanges that occur across the interface between the phases. Need for further developments are discussed." @default.
- W2550075603 created "2016-11-30" @default.
- W2550075603 creator A5038165954 @default.
- W2550075603 creator A5057661454 @default.
- W2550075603 date "2016-11-22" @default.
- W2550075603 modified "2023-09-27" @default.
- W2550075603 title "Computational fluid dynamics and population balance modelling of nucleate boiling of cryogenic liquids: Theoretical developments" @default.
- W2550075603 cites W180872928 @default.
- W2550075603 cites W1969740111 @default.
- W2550075603 cites W1970210039 @default.
- W2550075603 cites W1974061508 @default.
- W2550075603 cites W1974097079 @default.
- W2550075603 cites W1978411281 @default.
- W2550075603 cites W1979210241 @default.
- W2550075603 cites W1979748216 @default.
- W2550075603 cites W1980820243 @default.
- W2550075603 cites W1988550713 @default.
- W2550075603 cites W1989445852 @default.
- W2550075603 cites W1993485665 @default.
- W2550075603 cites W1996775167 @default.
- W2550075603 cites W2003224470 @default.
- W2550075603 cites W2003322059 @default.
- W2550075603 cites W2006124101 @default.
- W2550075603 cites W2011698702 @default.
- W2550075603 cites W2017358914 @default.
- W2550075603 cites W2019897255 @default.
- W2550075603 cites W2024671525 @default.
- W2550075603 cites W2025477072 @default.
- W2550075603 cites W2026233659 @default.
- W2550075603 cites W2033865084 @default.
- W2550075603 cites W2038722280 @default.
- W2550075603 cites W2040191077 @default.
- W2550075603 cites W2040197573 @default.
- W2550075603 cites W2040453920 @default.
- W2550075603 cites W2041610324 @default.
- W2550075603 cites W2043616344 @default.
- W2550075603 cites W2046597975 @default.
- W2550075603 cites W2047405655 @default.
- W2550075603 cites W2049031761 @default.
- W2550075603 cites W2050572136 @default.
- W2550075603 cites W2053415620 @default.
- W2550075603 cites W2055088392 @default.
- W2550075603 cites W2057519295 @default.
- W2550075603 cites W2063371630 @default.
- W2550075603 cites W2065966642 @default.
- W2550075603 cites W2066025116 @default.
- W2550075603 cites W2066355963 @default.
- W2550075603 cites W2068995669 @default.
- W2550075603 cites W2070179680 @default.
- W2550075603 cites W2071607615 @default.
- W2550075603 cites W2071617378 @default.
- W2550075603 cites W2076154227 @default.
- W2550075603 cites W2081800597 @default.
- W2550075603 cites W2082694703 @default.
- W2550075603 cites W2088981939 @default.
- W2550075603 cites W2089582315 @default.
- W2550075603 cites W2090046380 @default.
- W2550075603 cites W2096076442 @default.
- W2550075603 cites W2120740417 @default.
- W2550075603 cites W2122701593 @default.
- W2550075603 cites W2127718590 @default.
- W2550075603 cites W2145976881 @default.
- W2550075603 cites W2146258915 @default.
- W2550075603 cites W2148027231 @default.
- W2550075603 cites W2151273208 @default.
- W2550075603 cites W2151636137 @default.
- W2550075603 cites W2153492345 @default.
- W2550075603 cites W2157161968 @default.
- W2550075603 cites W2165520457 @default.
- W2550075603 cites W2166225626 @default.
- W2550075603 cites W2172130435 @default.
- W2550075603 cites W2284268074 @default.
- W2550075603 cites W2316839432 @default.
- W2550075603 cites W3033943658 @default.
- W2550075603 cites W4247918251 @default.
- W2550075603 cites W589221124 @default.
- W2550075603 cites W1980824214 @default.
- W2550075603 doi "https://doi.org/10.1177/1757482x16674217" @default.
- W2550075603 hasPublicationYear "2016" @default.
- W2550075603 type Work @default.
- W2550075603 sameAs 2550075603 @default.
- W2550075603 citedByCount "8" @default.
- W2550075603 countsByYear W25500756032018 @default.
- W2550075603 countsByYear W25500756032019 @default.
- W2550075603 countsByYear W25500756032021 @default.
- W2550075603 countsByYear W25500756032023 @default.
- W2550075603 crossrefType "journal-article" @default.
- W2550075603 hasAuthorship W2550075603A5038165954 @default.
- W2550075603 hasAuthorship W2550075603A5057661454 @default.
- W2550075603 hasBestOaLocation W25500756031 @default.
- W2550075603 hasConcept C115139850 @default.
- W2550075603 hasConcept C121332964 @default.
- W2550075603 hasConcept C157777378 @default.
- W2550075603 hasConcept C157915830 @default.
- W2550075603 hasConcept C159188206 @default.
- W2550075603 hasConcept C167131557 @default.
- W2550075603 hasConcept C18762648 @default.
- W2550075603 hasConcept C192562407 @default.