Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550223322> ?p ?o ?g. }
- W2550223322 abstract "Effective information analysis generally boils down to properly identifying the structure or geometry of the data, which is often represented by a graph. In some applications, this structure may be partly determined by design constraints or pre-determined sensing arrangements, like in road transportation networks for example. In general though, the data structure is not readily available and becomes pretty difficult to define. In particular, the global smoothness assumptions, that most of the existing works adopt, are often too general and unable to properly capture localized properties of data. In this paper, we go beyond this classical data model and rather propose to represent information as a sparse combination of localized functions that live on a data structure represented by a graph. Based on this model, we focus on the problem of inferring the connectivity that best explains the data samples at different vertices of a graph that is a priori unknown. We concentrate on the case where the observed data is actually the sum of heat diffusion processes, which is a quite common model for data on networks or other irregular structures. We cast a new graph learning problem and solve it with an efficient nonconvex optimization algorithm. Experiments on both synthetic and real world data finally illustrate the benefits of the proposed graph learning framework and confirm that the data structure can be efficiently learned from data observations only. We believe that our algorithm will help solving key questions in diverse application domains such as social and biological network analysis where it is crucial to unveil proper geometry for data understanding and inference." @default.
- W2550223322 created "2016-11-30" @default.
- W2550223322 creator A5000947076 @default.
- W2550223322 creator A5026662607 @default.
- W2550223322 creator A5072466998 @default.
- W2550223322 creator A5084601962 @default.
- W2550223322 date "2016-11-04" @default.
- W2550223322 modified "2023-10-01" @default.
- W2550223322 title "Learning heat diffusion graphs" @default.
- W2550223322 cites W138345131 @default.
- W2550223322 cites W1483804921 @default.
- W2550223322 cites W1532325895 @default.
- W2550223322 cites W1541479357 @default.
- W2550223322 cites W1578099820 @default.
- W2550223322 cites W1774304772 @default.
- W2550223322 cites W2008620264 @default.
- W2550223322 cites W2027982384 @default.
- W2550223322 cites W205960364 @default.
- W2550223322 cites W2100556411 @default.
- W2550223322 cites W2101491865 @default.
- W2550223322 cites W2122825543 @default.
- W2550223322 cites W2124543570 @default.
- W2550223322 cites W2132555912 @default.
- W2550223322 cites W2137096596 @default.
- W2550223322 cites W2141006018 @default.
- W2550223322 cites W2158787690 @default.
- W2550223322 cites W2160660350 @default.
- W2550223322 cites W2163398148 @default.
- W2550223322 cites W2164278908 @default.
- W2550223322 cites W2171878761 @default.
- W2550223322 cites W2225667838 @default.
- W2550223322 cites W2305552472 @default.
- W2550223322 cites W2399508263 @default.
- W2550223322 cites W2410102436 @default.
- W2550223322 cites W2487418985 @default.
- W2550223322 cites W2592129227 @default.
- W2550223322 cites W2796728297 @default.
- W2550223322 cites W2964012239 @default.
- W2550223322 cites W2970302411 @default.
- W2550223322 cites W3143219376 @default.
- W2550223322 hasPublicationYear "2016" @default.
- W2550223322 type Work @default.
- W2550223322 sameAs 2550223322 @default.
- W2550223322 citedByCount "1" @default.
- W2550223322 countsByYear W25502233222016 @default.
- W2550223322 crossrefType "posted-content" @default.
- W2550223322 hasAuthorship W2550223322A5000947076 @default.
- W2550223322 hasAuthorship W2550223322A5026662607 @default.
- W2550223322 hasAuthorship W2550223322A5072466998 @default.
- W2550223322 hasAuthorship W2550223322A5084601962 @default.
- W2550223322 hasConcept C111472728 @default.
- W2550223322 hasConcept C11413529 @default.
- W2550223322 hasConcept C120665830 @default.
- W2550223322 hasConcept C121332964 @default.
- W2550223322 hasConcept C124101348 @default.
- W2550223322 hasConcept C132525143 @default.
- W2550223322 hasConcept C138885662 @default.
- W2550223322 hasConcept C162319229 @default.
- W2550223322 hasConcept C192209626 @default.
- W2550223322 hasConcept C199360897 @default.
- W2550223322 hasConcept C26517878 @default.
- W2550223322 hasConcept C38652104 @default.
- W2550223322 hasConcept C41008148 @default.
- W2550223322 hasConcept C75553542 @default.
- W2550223322 hasConcept C80444323 @default.
- W2550223322 hasConceptScore W2550223322C111472728 @default.
- W2550223322 hasConceptScore W2550223322C11413529 @default.
- W2550223322 hasConceptScore W2550223322C120665830 @default.
- W2550223322 hasConceptScore W2550223322C121332964 @default.
- W2550223322 hasConceptScore W2550223322C124101348 @default.
- W2550223322 hasConceptScore W2550223322C132525143 @default.
- W2550223322 hasConceptScore W2550223322C138885662 @default.
- W2550223322 hasConceptScore W2550223322C162319229 @default.
- W2550223322 hasConceptScore W2550223322C192209626 @default.
- W2550223322 hasConceptScore W2550223322C199360897 @default.
- W2550223322 hasConceptScore W2550223322C26517878 @default.
- W2550223322 hasConceptScore W2550223322C38652104 @default.
- W2550223322 hasConceptScore W2550223322C41008148 @default.
- W2550223322 hasConceptScore W2550223322C75553542 @default.
- W2550223322 hasConceptScore W2550223322C80444323 @default.
- W2550223322 hasLocation W25502233221 @default.
- W2550223322 hasOpenAccess W2550223322 @default.
- W2550223322 hasPrimaryLocation W25502233221 @default.
- W2550223322 hasRelatedWork W104304532 @default.
- W2550223322 hasRelatedWork W1511044862 @default.
- W2550223322 hasRelatedWork W1568395653 @default.
- W2550223322 hasRelatedWork W2050428940 @default.
- W2550223322 hasRelatedWork W2182705849 @default.
- W2550223322 hasRelatedWork W2404429827 @default.
- W2550223322 hasRelatedWork W2525706953 @default.
- W2550223322 hasRelatedWork W2557117065 @default.
- W2550223322 hasRelatedWork W2563671149 @default.
- W2550223322 hasRelatedWork W2588398343 @default.
- W2550223322 hasRelatedWork W2608642409 @default.
- W2550223322 hasRelatedWork W2893521538 @default.
- W2550223322 hasRelatedWork W2904210267 @default.
- W2550223322 hasRelatedWork W2953161186 @default.
- W2550223322 hasRelatedWork W2955704562 @default.
- W2550223322 hasRelatedWork W2989839912 @default.
- W2550223322 hasRelatedWork W2998340098 @default.