Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550291226> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2550291226 endingPage "82" @default.
- W2550291226 startingPage "75" @default.
- W2550291226 abstract "In machining operations, the extents of important effect of the process parameters like speed, feed, and depth of cut are different for different responses. This paper investigates the effect of process parameters in turning of AA6061 T6 on conventional lathe. The problem appeared owing to selection of parameters increases the deficiency of turning process. Modeling can facilitate the acquisition of a better understanding of such complex process, save the machining time and make the process economic. Thus, the present work clearly defines the development of an artificial neural network (ANN) model for predicting the material removal rate. This study presents a new method to prediction the material removal rate (MRR) on a lathe turning Process. Firstly, Process parameters namely, Spindle speed, depth of cut and feed rate are designed using the Box behnken (DOE) was employed as the experimental strategy. The result shows that the ANN model can predict the material removal rate effectively. This approach helps in economic lathe machining." @default.
- W2550291226 created "2016-11-30" @default.
- W2550291226 creator A5011807108 @default.
- W2550291226 creator A5050089703 @default.
- W2550291226 creator A5063906186 @default.
- W2550291226 date "2016-02-28" @default.
- W2550291226 modified "2023-10-16" @default.
- W2550291226 title "Development of Artificial Intelligence Model for the Prediction of MRR in Turning" @default.
- W2550291226 cites W1966297531 @default.
- W2550291226 cites W1981631178 @default.
- W2550291226 cites W2010729436 @default.
- W2550291226 cites W2014373397 @default.
- W2550291226 cites W2031870029 @default.
- W2550291226 cites W2042467920 @default.
- W2550291226 cites W2046404933 @default.
- W2550291226 cites W2066865494 @default.
- W2550291226 cites W2066947166 @default.
- W2550291226 cites W2073366716 @default.
- W2550291226 cites W2144104802 @default.
- W2550291226 cites W40177109 @default.
- W2550291226 doi "https://doi.org/10.14257/ijhit.2016.9.2.07" @default.
- W2550291226 hasPublicationYear "2016" @default.
- W2550291226 type Work @default.
- W2550291226 sameAs 2550291226 @default.
- W2550291226 citedByCount "1" @default.
- W2550291226 countsByYear W25502912262022 @default.
- W2550291226 crossrefType "journal-article" @default.
- W2550291226 hasAuthorship W2550291226A5011807108 @default.
- W2550291226 hasAuthorship W2550291226A5050089703 @default.
- W2550291226 hasAuthorship W2550291226A5063906186 @default.
- W2550291226 hasConcept C154945302 @default.
- W2550291226 hasConcept C41008148 @default.
- W2550291226 hasConceptScore W2550291226C154945302 @default.
- W2550291226 hasConceptScore W2550291226C41008148 @default.
- W2550291226 hasIssue "2" @default.
- W2550291226 hasLocation W25502912261 @default.
- W2550291226 hasOpenAccess W2550291226 @default.
- W2550291226 hasPrimaryLocation W25502912261 @default.
- W2550291226 hasRelatedWork W1596801655 @default.
- W2550291226 hasRelatedWork W2130043461 @default.
- W2550291226 hasRelatedWork W2350741829 @default.
- W2550291226 hasRelatedWork W2358668433 @default.
- W2550291226 hasRelatedWork W2376932109 @default.
- W2550291226 hasRelatedWork W2382290278 @default.
- W2550291226 hasRelatedWork W2390279801 @default.
- W2550291226 hasRelatedWork W2748952813 @default.
- W2550291226 hasRelatedWork W2899084033 @default.
- W2550291226 hasRelatedWork W2530322880 @default.
- W2550291226 hasVolume "9" @default.
- W2550291226 isParatext "false" @default.
- W2550291226 isRetracted "false" @default.
- W2550291226 magId "2550291226" @default.
- W2550291226 workType "article" @default.