Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550402458> ?p ?o ?g. }
- W2550402458 abstract "In a multilabel classification problem, each object gets associated with multiple target labels. Graded multilabel classification (GMLC) problems go a step further in that they provide a degree of association between an object and each possible label. The goal of a GMLC model is to learn this mapping while minimizing a certain loss function. In this paper, we tackle GMLC problems from a Granular Computing perspective for the first time. The proposed schemes, termed as partitive granular cognitive maps (PGCMs), lean on Fuzzy Cognitive Maps (FCMs) whose input concepts represent cluster prototypes elicited via Fuzzy C-Means whereas the output concepts denote the set of existing labels. We consider three different linkages between the FCM's input and output concepts and learn the causal connections (weight matrix) through a Particle Swarm Optimizer (PSO). During the exploitation phase, the membership grades of a test object to each fuzzy cluster prototype in the PGCM are taken as the initial activation values of the recurrent network. Empirical results on 16 synthetically generated datasets show that the PGCM architecture is capable of accurately solving GMLC instances." @default.
- W2550402458 created "2016-11-30" @default.
- W2550402458 creator A5006779580 @default.
- W2550402458 creator A5036962111 @default.
- W2550402458 creator A5037965915 @default.
- W2550402458 creator A5042634804 @default.
- W2550402458 creator A5052669824 @default.
- W2550402458 date "2016-07-01" @default.
- W2550402458 modified "2023-10-18" @default.
- W2550402458 title "Partitive granular Cognitive Maps to graded multilabel classification" @default.
- W2550402458 cites W139666275 @default.
- W2550402458 cites W1635892993 @default.
- W2550402458 cites W168293017 @default.
- W2550402458 cites W1873332500 @default.
- W2550402458 cites W1947957290 @default.
- W2550402458 cites W1965118163 @default.
- W2550402458 cites W1974758710 @default.
- W2550402458 cites W1995450389 @default.
- W2550402458 cites W1995671064 @default.
- W2550402458 cites W2003864267 @default.
- W2550402458 cites W2022898897 @default.
- W2550402458 cites W2033076221 @default.
- W2550402458 cites W2040191959 @default.
- W2550402458 cites W2072707985 @default.
- W2550402458 cites W2081232506 @default.
- W2550402458 cites W2089085970 @default.
- W2550402458 cites W2092394555 @default.
- W2550402458 cites W2093123847 @default.
- W2550402458 cites W2095224843 @default.
- W2550402458 cites W2102842717 @default.
- W2550402458 cites W2120156417 @default.
- W2550402458 cites W2123718260 @default.
- W2550402458 cites W2146241755 @default.
- W2550402458 cites W2150373884 @default.
- W2550402458 cites W2154119246 @default.
- W2550402458 cites W2165315689 @default.
- W2550402458 cites W2165560804 @default.
- W2550402458 cites W2169245194 @default.
- W2550402458 cites W2190869216 @default.
- W2550402458 cites W2280358575 @default.
- W2550402458 cites W2309616937 @default.
- W2550402458 cites W2400530679 @default.
- W2550402458 cites W2404431775 @default.
- W2550402458 cites W2497439958 @default.
- W2550402458 cites W2543580944 @default.
- W2550402458 cites W264139406 @default.
- W2550402458 cites W283217679 @default.
- W2550402458 cites W2911964244 @default.
- W2550402458 cites W55768394 @default.
- W2550402458 doi "https://doi.org/10.1109/fuzz-ieee.2016.7737848" @default.
- W2550402458 hasPublicationYear "2016" @default.
- W2550402458 type Work @default.
- W2550402458 sameAs 2550402458 @default.
- W2550402458 citedByCount "3" @default.
- W2550402458 countsByYear W25504024582017 @default.
- W2550402458 countsByYear W25504024582018 @default.
- W2550402458 crossrefType "proceedings-article" @default.
- W2550402458 hasAuthorship W2550402458A5006779580 @default.
- W2550402458 hasAuthorship W2550402458A5036962111 @default.
- W2550402458 hasAuthorship W2550402458A5037965915 @default.
- W2550402458 hasAuthorship W2550402458A5042634804 @default.
- W2550402458 hasAuthorship W2550402458A5052669824 @default.
- W2550402458 hasBestOaLocation W25504024582 @default.
- W2550402458 hasConcept C111012933 @default.
- W2550402458 hasConcept C119857082 @default.
- W2550402458 hasConcept C12713177 @default.
- W2550402458 hasConcept C14036430 @default.
- W2550402458 hasConcept C154945302 @default.
- W2550402458 hasConcept C17209119 @default.
- W2550402458 hasConcept C177264268 @default.
- W2550402458 hasConcept C199360897 @default.
- W2550402458 hasConcept C2781238097 @default.
- W2550402458 hasConcept C33923547 @default.
- W2550402458 hasConcept C41008148 @default.
- W2550402458 hasConcept C42011625 @default.
- W2550402458 hasConcept C5041914 @default.
- W2550402458 hasConcept C5263885 @default.
- W2550402458 hasConcept C58166 @default.
- W2550402458 hasConcept C78458016 @default.
- W2550402458 hasConcept C86803240 @default.
- W2550402458 hasConceptScore W2550402458C111012933 @default.
- W2550402458 hasConceptScore W2550402458C119857082 @default.
- W2550402458 hasConceptScore W2550402458C12713177 @default.
- W2550402458 hasConceptScore W2550402458C14036430 @default.
- W2550402458 hasConceptScore W2550402458C154945302 @default.
- W2550402458 hasConceptScore W2550402458C17209119 @default.
- W2550402458 hasConceptScore W2550402458C177264268 @default.
- W2550402458 hasConceptScore W2550402458C199360897 @default.
- W2550402458 hasConceptScore W2550402458C2781238097 @default.
- W2550402458 hasConceptScore W2550402458C33923547 @default.
- W2550402458 hasConceptScore W2550402458C41008148 @default.
- W2550402458 hasConceptScore W2550402458C42011625 @default.
- W2550402458 hasConceptScore W2550402458C5041914 @default.
- W2550402458 hasConceptScore W2550402458C5263885 @default.
- W2550402458 hasConceptScore W2550402458C58166 @default.
- W2550402458 hasConceptScore W2550402458C78458016 @default.
- W2550402458 hasConceptScore W2550402458C86803240 @default.
- W2550402458 hasLocation W25504024581 @default.
- W2550402458 hasLocation W25504024582 @default.
- W2550402458 hasOpenAccess W2550402458 @default.