Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550409828> ?p ?o ?g. }
- W2550409828 endingPage "146" @default.
- W2550409828 startingPage "135" @default.
- W2550409828 abstract "In histopathological image analysis, the morphology of histological structures, such as glands and nuclei, has been routinely adopted by pathologists to assess the malignancy degree of adenocarcinomas. Accurate detection and segmentation of these objects of interest from histology images is an essential prerequisite to obtain reliable morphological statistics for quantitative diagnosis. While manual annotation is error-prone, time-consuming and operator-dependant, automated detection and segmentation of objects of interest from histology images can be very challenging due to the large appearance variation, existence of strong mimics, and serious degeneration of histological structures. In order to meet these challenges, we propose a novel deep contour-aware network (DCAN) under a unified multi-task learning framework for more accurate detection and segmentation. In the proposed network, multi-level contextual features are explored based on an end-to-end fully convolutional network (FCN) to deal with the large appearance variation. We further propose to employ an auxiliary supervision mechanism to overcome the problem of vanishing gradients when training such a deep network. More importantly, our network can not only output accurate probability maps of histological objects, but also depict clear contours simultaneously for separating clustered object instances, which further boosts the segmentation performance. Our method ranked the first in two histological object segmentation challenges, including 2015 MICCAI Gland Segmentation Challenge and 2015 MICCAI Nuclei Segmentation Challenge. Extensive experiments on these two challenging datasets demonstrate the superior performance of our method, surpassing all the other methods by a significant margin." @default.
- W2550409828 created "2016-11-30" @default.
- W2550409828 creator A5012581106 @default.
- W2550409828 creator A5031202827 @default.
- W2550409828 creator A5032708386 @default.
- W2550409828 creator A5048895819 @default.
- W2550409828 creator A5088302108 @default.
- W2550409828 creator A5090516040 @default.
- W2550409828 date "2017-02-01" @default.
- W2550409828 modified "2023-10-12" @default.
- W2550409828 title "DCAN: Deep contour-aware networks for object instance segmentation from histology images" @default.
- W2550409828 cites W1498436455 @default.
- W2550409828 cites W1950315773 @default.
- W2550409828 cites W2003927787 @default.
- W2550409828 cites W2006870848 @default.
- W2550409828 cites W2010871781 @default.
- W2550409828 cites W2011120797 @default.
- W2550409828 cites W2011966237 @default.
- W2550409828 cites W2026893473 @default.
- W2550409828 cites W2031489346 @default.
- W2550409828 cites W2043034051 @default.
- W2550409828 cites W2048990349 @default.
- W2550409828 cites W2051765910 @default.
- W2550409828 cites W2055398836 @default.
- W2550409828 cites W2057114171 @default.
- W2550409828 cites W2058792133 @default.
- W2550409828 cites W2076450712 @default.
- W2550409828 cites W2089580584 @default.
- W2550409828 cites W2103243046 @default.
- W2550409828 cites W2112796928 @default.
- W2550409828 cites W2117395293 @default.
- W2550409828 cites W2119774436 @default.
- W2550409828 cites W2120549843 @default.
- W2550409828 cites W2122394460 @default.
- W2550409828 cites W2128252595 @default.
- W2550409828 cites W2132031490 @default.
- W2550409828 cites W2134647348 @default.
- W2550409828 cites W2142332605 @default.
- W2550409828 cites W2148743296 @default.
- W2550409828 cites W2151650298 @default.
- W2550409828 cites W2156398782 @default.
- W2550409828 cites W2248620004 @default.
- W2550409828 cites W2253429366 @default.
- W2550409828 cites W2312404985 @default.
- W2550409828 cites W2343172899 @default.
- W2550409828 cites W2345010043 @default.
- W2550409828 cites W2346062110 @default.
- W2550409828 doi "https://doi.org/10.1016/j.media.2016.11.004" @default.
- W2550409828 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27898306" @default.
- W2550409828 hasPublicationYear "2017" @default.
- W2550409828 type Work @default.
- W2550409828 sameAs 2550409828 @default.
- W2550409828 citedByCount "366" @default.
- W2550409828 countsByYear W25504098282017 @default.
- W2550409828 countsByYear W25504098282018 @default.
- W2550409828 countsByYear W25504098282019 @default.
- W2550409828 countsByYear W25504098282020 @default.
- W2550409828 countsByYear W25504098282021 @default.
- W2550409828 countsByYear W25504098282022 @default.
- W2550409828 countsByYear W25504098282023 @default.
- W2550409828 crossrefType "journal-article" @default.
- W2550409828 hasAuthorship W2550409828A5012581106 @default.
- W2550409828 hasAuthorship W2550409828A5031202827 @default.
- W2550409828 hasAuthorship W2550409828A5032708386 @default.
- W2550409828 hasAuthorship W2550409828A5048895819 @default.
- W2550409828 hasAuthorship W2550409828A5088302108 @default.
- W2550409828 hasAuthorship W2550409828A5090516040 @default.
- W2550409828 hasConcept C108583219 @default.
- W2550409828 hasConcept C119857082 @default.
- W2550409828 hasConcept C124504099 @default.
- W2550409828 hasConcept C153180895 @default.
- W2550409828 hasConcept C154945302 @default.
- W2550409828 hasConcept C2776151529 @default.
- W2550409828 hasConcept C2781238097 @default.
- W2550409828 hasConcept C31972630 @default.
- W2550409828 hasConcept C41008148 @default.
- W2550409828 hasConcept C774472 @default.
- W2550409828 hasConcept C81363708 @default.
- W2550409828 hasConcept C89600930 @default.
- W2550409828 hasConceptScore W2550409828C108583219 @default.
- W2550409828 hasConceptScore W2550409828C119857082 @default.
- W2550409828 hasConceptScore W2550409828C124504099 @default.
- W2550409828 hasConceptScore W2550409828C153180895 @default.
- W2550409828 hasConceptScore W2550409828C154945302 @default.
- W2550409828 hasConceptScore W2550409828C2776151529 @default.
- W2550409828 hasConceptScore W2550409828C2781238097 @default.
- W2550409828 hasConceptScore W2550409828C31972630 @default.
- W2550409828 hasConceptScore W2550409828C41008148 @default.
- W2550409828 hasConceptScore W2550409828C774472 @default.
- W2550409828 hasConceptScore W2550409828C81363708 @default.
- W2550409828 hasConceptScore W2550409828C89600930 @default.
- W2550409828 hasFunder F4320321001 @default.
- W2550409828 hasLocation W25504098281 @default.
- W2550409828 hasLocation W25504098282 @default.
- W2550409828 hasOpenAccess W2550409828 @default.
- W2550409828 hasPrimaryLocation W25504098281 @default.
- W2550409828 hasRelatedWork W1721780360 @default.
- W2550409828 hasRelatedWork W1963494852 @default.