Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550492725> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2550492725 abstract "Key performance characteristics of BCI systems are speed (i.e., how long it takes to make a selection) and precision (i.e., how often the executed selection is the one the user intended). Current systems allow for one selection within several seconds at a relatively high accuracy. Expressed in bit rate, which combines both speed and accuracy, the sustained performance of typical non-invasive and invasive BCI systems is still modest. The generation performance of a brain computer interface depends largely on the signal to noise ratio and translation algorithms. Current BCIs have low information transfer rates. Artifact and Redundancy with acquired data two another major reasons for this limited capacity of Current BCIs. Artifacts are undesired signals that can introduce significant changes in brain signals and ultimately affect the neurological phenomenon. In new BCI systems for increase accuracy, increased number of electrodes. In this case the increased number of electrodes causes a non-linear increase Redundancy. This article used Genetic Algorithm and independent component analysis (ICA) for select The Effective components of EEG signal and Redundancy Reduction. The experimental results show that the proposed approach has the superior performance to the traditional filtering method and is applicable in new BCI systems. Another major reason for the modest bit rate is translation algorithm. In this paper, we introduce adaptive classifiers for classify electroencephalogram (EEG) signals. The adaptive classifier is brain emotional learning based adaptive classifier (BELBAC), which is based on emotional learning process." @default.
- W2550492725 created "2016-11-30" @default.
- W2550492725 creator A5005478489 @default.
- W2550492725 creator A5061965902 @default.
- W2550492725 date "2013-01-01" @default.
- W2550492725 modified "2023-09-27" @default.
- W2550492725 title "Brain emotional learning based Brain Computer Interface with Independent Component Analysis" @default.
- W2550492725 cites W1485161427 @default.
- W2550492725 cites W1488771041 @default.
- W2550492725 cites W1690721869 @default.
- W2550492725 cites W1834612369 @default.
- W2550492725 cites W1990928820 @default.
- W2550492725 cites W2080146971 @default.
- W2550492725 cites W2097002922 @default.
- W2550492725 cites W2108824330 @default.
- W2550492725 cites W2157034913 @default.
- W2550492725 cites W2159644572 @default.
- W2550492725 cites W2161457168 @default.
- W2550492725 cites W2169064120 @default.
- W2550492725 cites W2169962852 @default.
- W2550492725 hasPublicationYear "2013" @default.
- W2550492725 type Work @default.
- W2550492725 sameAs 2550492725 @default.
- W2550492725 citedByCount "1" @default.
- W2550492725 countsByYear W25504927252014 @default.
- W2550492725 crossrefType "journal-article" @default.
- W2550492725 hasAuthorship W2550492725A5005478489 @default.
- W2550492725 hasAuthorship W2550492725A5061965902 @default.
- W2550492725 hasConcept C111919701 @default.
- W2550492725 hasConcept C118552586 @default.
- W2550492725 hasConcept C119857082 @default.
- W2550492725 hasConcept C152124472 @default.
- W2550492725 hasConcept C153180895 @default.
- W2550492725 hasConcept C154945302 @default.
- W2550492725 hasConcept C15744967 @default.
- W2550492725 hasConcept C173201364 @default.
- W2550492725 hasConcept C28490314 @default.
- W2550492725 hasConcept C41008148 @default.
- W2550492725 hasConcept C51432778 @default.
- W2550492725 hasConcept C522805319 @default.
- W2550492725 hasConcept C95623464 @default.
- W2550492725 hasConceptScore W2550492725C111919701 @default.
- W2550492725 hasConceptScore W2550492725C118552586 @default.
- W2550492725 hasConceptScore W2550492725C119857082 @default.
- W2550492725 hasConceptScore W2550492725C152124472 @default.
- W2550492725 hasConceptScore W2550492725C153180895 @default.
- W2550492725 hasConceptScore W2550492725C154945302 @default.
- W2550492725 hasConceptScore W2550492725C15744967 @default.
- W2550492725 hasConceptScore W2550492725C173201364 @default.
- W2550492725 hasConceptScore W2550492725C28490314 @default.
- W2550492725 hasConceptScore W2550492725C41008148 @default.
- W2550492725 hasConceptScore W2550492725C51432778 @default.
- W2550492725 hasConceptScore W2550492725C522805319 @default.
- W2550492725 hasConceptScore W2550492725C95623464 @default.
- W2550492725 hasLocation W25504927251 @default.
- W2550492725 hasOpenAccess W2550492725 @default.
- W2550492725 hasPrimaryLocation W25504927251 @default.
- W2550492725 hasRelatedWork W127639016 @default.
- W2550492725 hasRelatedWork W1562480684 @default.
- W2550492725 hasRelatedWork W1994321338 @default.
- W2550492725 hasRelatedWork W2121745483 @default.
- W2550492725 hasRelatedWork W2158766351 @default.
- W2550492725 hasRelatedWork W2165589756 @default.
- W2550492725 hasRelatedWork W2239614280 @default.
- W2550492725 hasRelatedWork W2277798472 @default.
- W2550492725 hasRelatedWork W260090196 @default.
- W2550492725 hasRelatedWork W2619194092 @default.
- W2550492725 hasRelatedWork W2738999312 @default.
- W2550492725 hasRelatedWork W2774607031 @default.
- W2550492725 hasRelatedWork W2787870705 @default.
- W2550492725 hasRelatedWork W2800566345 @default.
- W2550492725 hasRelatedWork W2887424606 @default.
- W2550492725 hasRelatedWork W3043396847 @default.
- W2550492725 hasRelatedWork W3091096710 @default.
- W2550492725 hasRelatedWork W3120129481 @default.
- W2550492725 hasRelatedWork W3168724868 @default.
- W2550492725 hasRelatedWork W2741637175 @default.
- W2550492725 isParatext "false" @default.
- W2550492725 isRetracted "false" @default.
- W2550492725 magId "2550492725" @default.
- W2550492725 workType "article" @default.