Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550563931> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2550563931 abstract "Mining frequent patterns in transaction databases, time-series databases, and many other kinds of databases has been studied popularly in data mining research. Most of the previous studies adopt an Apriori-like candidate set generation-and-test approach. However, candidate set generation is still costly, especially when there exist a large number of patterns and/or long patterns. Further, dynamic itemset counting algorithm, an extension to Apriori algorithm used to reduce number of scans on the dataset. It was alternative to Apriori Itemset Generation .In this, itemsets are dynamically added and deleted as transactions are read .It relies on the fact that for an itemset to be frequent, all of its subsets must also be frequent, so we only examine those itemsets whose subsets are all frequent. Both Apriori and DIC are based on candidate generation. But frequent-pattern tree (FP-tree) structure, which is an extended prefix-tree structure for storing compressed, crucial information about frequent patterns, mine the frequent itemsets without any candidate generation. Our performance study shows that the FP-growth method is efficient and scalable for mining both long and short frequent patterns, and is about an order of magnitude faster than the Apriori algorithm and also faster than some recently reported new frequent-pattern mining methods. In this paper, we combine the features of both FP-tree and dynamic itemset so that we can mine the frequent itemsets dynamically without any candidate generation. We propose a new algorithm, Dynamic-FP which takes the advantages of both DIC as well as FP-tree. This algorithm will be compared with previous algorithms to give the better performance for large dataset." @default.
- W2550563931 created "2016-11-30" @default.
- W2550563931 creator A5047255149 @default.
- W2550563931 creator A5049329977 @default.
- W2550563931 date "2011-01-01" @default.
- W2550563931 modified "2023-09-26" @default.
- W2550563931 title "Improved Association Mining Algorithm for Large Dataset" @default.
- W2550563931 cites W1484413656 @default.
- W2550563931 cites W1787564306 @default.
- W2550563931 cites W2100406636 @default.
- W2550563931 cites W2114624736 @default.
- W2550563931 cites W2140190241 @default.
- W2550563931 cites W2153028052 @default.
- W2550563931 cites W2166559705 @default.
- W2550563931 hasPublicationYear "2011" @default.
- W2550563931 type Work @default.
- W2550563931 sameAs 2550563931 @default.
- W2550563931 citedByCount "5" @default.
- W2550563931 countsByYear W25505639312013 @default.
- W2550563931 countsByYear W25505639312014 @default.
- W2550563931 crossrefType "journal-article" @default.
- W2550563931 hasAuthorship W2550563931A5047255149 @default.
- W2550563931 hasAuthorship W2550563931A5049329977 @default.
- W2550563931 hasConcept C111472728 @default.
- W2550563931 hasConcept C113174947 @default.
- W2550563931 hasConcept C124101348 @default.
- W2550563931 hasConcept C134306372 @default.
- W2550563931 hasConcept C138885662 @default.
- W2550563931 hasConcept C162319229 @default.
- W2550563931 hasConcept C177264268 @default.
- W2550563931 hasConcept C190290938 @default.
- W2550563931 hasConcept C193524817 @default.
- W2550563931 hasConcept C199360897 @default.
- W2550563931 hasConcept C33923547 @default.
- W2550563931 hasConcept C41008148 @default.
- W2550563931 hasConcept C48044578 @default.
- W2550563931 hasConcept C75553542 @default.
- W2550563931 hasConcept C75949130 @default.
- W2550563931 hasConcept C77088390 @default.
- W2550563931 hasConcept C81440476 @default.
- W2550563931 hasConceptScore W2550563931C111472728 @default.
- W2550563931 hasConceptScore W2550563931C113174947 @default.
- W2550563931 hasConceptScore W2550563931C124101348 @default.
- W2550563931 hasConceptScore W2550563931C134306372 @default.
- W2550563931 hasConceptScore W2550563931C138885662 @default.
- W2550563931 hasConceptScore W2550563931C162319229 @default.
- W2550563931 hasConceptScore W2550563931C177264268 @default.
- W2550563931 hasConceptScore W2550563931C190290938 @default.
- W2550563931 hasConceptScore W2550563931C193524817 @default.
- W2550563931 hasConceptScore W2550563931C199360897 @default.
- W2550563931 hasConceptScore W2550563931C33923547 @default.
- W2550563931 hasConceptScore W2550563931C41008148 @default.
- W2550563931 hasConceptScore W2550563931C48044578 @default.
- W2550563931 hasConceptScore W2550563931C75553542 @default.
- W2550563931 hasConceptScore W2550563931C75949130 @default.
- W2550563931 hasConceptScore W2550563931C77088390 @default.
- W2550563931 hasConceptScore W2550563931C81440476 @default.
- W2550563931 hasLocation W25505639311 @default.
- W2550563931 hasOpenAccess W2550563931 @default.
- W2550563931 hasPrimaryLocation W25505639311 @default.
- W2550563931 hasRelatedWork W109273429 @default.
- W2550563931 hasRelatedWork W112999697 @default.
- W2550563931 hasRelatedWork W1518718261 @default.
- W2550563931 hasRelatedWork W1525550609 @default.
- W2550563931 hasRelatedWork W158803013 @default.
- W2550563931 hasRelatedWork W1974947143 @default.
- W2550563931 hasRelatedWork W2183515182 @default.
- W2550563931 hasRelatedWork W22068932 @default.
- W2550563931 hasRelatedWork W2343120715 @default.
- W2550563931 hasRelatedWork W2353016847 @default.
- W2550563931 hasRelatedWork W2360713964 @default.
- W2550563931 hasRelatedWork W2374115004 @default.
- W2550563931 hasRelatedWork W2608684362 @default.
- W2550563931 hasRelatedWork W2742728988 @default.
- W2550563931 hasRelatedWork W2893242804 @default.
- W2550563931 hasRelatedWork W3045451889 @default.
- W2550563931 hasRelatedWork W841472321 @default.
- W2550563931 hasRelatedWork W2183568699 @default.
- W2550563931 hasRelatedWork W2290645241 @default.
- W2550563931 hasRelatedWork W2607588219 @default.
- W2550563931 isParatext "false" @default.
- W2550563931 isRetracted "false" @default.
- W2550563931 magId "2550563931" @default.
- W2550563931 workType "article" @default.