Matches in SemOpenAlex for { <https://semopenalex.org/work/W2550742437> ?p ?o ?g. }
- W2550742437 endingPage "e1005201" @default.
- W2550742437 startingPage "e1005201" @default.
- W2550742437 abstract "The ideal spatial scale, or granularity, at which infectious disease incidence should be monitored and forecast has been little explored. By identifying the optimal granularity for a given disease and host population, and matching surveillance and prediction efforts to this scale, response to emergent and recurrent outbreaks can be improved. Here we explore how granularity and representation of spatial structure affect influenza forecast accuracy within New York City. We develop network models at the borough and neighborhood levels, and use them in conjunction with surveillance data and a data assimilation method to forecast influenza activity. These forecasts are compared to an alternate system that predicts influenza for each borough or neighborhood in isolation. At the borough scale, influenza epidemics are highly synchronous despite substantial differences in intensity, and inclusion of network connectivity among boroughs generally improves forecast accuracy. At the neighborhood scale, we observe much greater spatial heterogeneity among influenza outbreaks including substantial differences in local outbreak timing and structure; however, inclusion of the network model structure generally degrades forecast accuracy. One notable exception is that local outbreak onset, particularly when signal is modest, is better predicted with the network model. These findings suggest that observation and forecast at sub-municipal scales within New York City provides richer, more discriminant information on influenza incidence, particularly at the neighborhood scale where greater heterogeneity exists, and that the spatial spread of influenza among localities can be forecast." @default.
- W2550742437 created "2016-11-30" @default.
- W2550742437 creator A5006605951 @default.
- W2550742437 creator A5032859588 @default.
- W2550742437 creator A5061502421 @default.
- W2550742437 date "2016-11-17" @default.
- W2550742437 modified "2023-10-15" @default.
- W2550742437 title "Forecasting Influenza Outbreaks in Boroughs and Neighborhoods of New York City" @default.
- W2550742437 cites W1650635506 @default.
- W2550742437 cites W1970729574 @default.
- W2550742437 cites W1977470776 @default.
- W2550742437 cites W1991288592 @default.
- W2550742437 cites W2001187841 @default.
- W2550742437 cites W2011088711 @default.
- W2550742437 cites W2016674662 @default.
- W2550742437 cites W2029997459 @default.
- W2550742437 cites W2052385416 @default.
- W2550742437 cites W2079884780 @default.
- W2550742437 cites W2085217319 @default.
- W2550742437 cites W2088692251 @default.
- W2550742437 cites W2090978188 @default.
- W2550742437 cites W2093258104 @default.
- W2550742437 cites W2100253428 @default.
- W2550742437 cites W2119950877 @default.
- W2550742437 cites W2130355776 @default.
- W2550742437 cites W2142703753 @default.
- W2550742437 cites W2143469080 @default.
- W2550742437 cites W2150657679 @default.
- W2550742437 cites W2152887095 @default.
- W2550742437 cites W2168583887 @default.
- W2550742437 cites W2170834676 @default.
- W2550742437 cites W2171085746 @default.
- W2550742437 cites W2171647573 @default.
- W2550742437 cites W2179584279 @default.
- W2550742437 cites W2286494817 @default.
- W2550742437 cites W2561460828 @default.
- W2550742437 doi "https://doi.org/10.1371/journal.pcbi.1005201" @default.
- W2550742437 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5113861" @default.
- W2550742437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27855155" @default.
- W2550742437 hasPublicationYear "2016" @default.
- W2550742437 type Work @default.
- W2550742437 sameAs 2550742437 @default.
- W2550742437 citedByCount "38" @default.
- W2550742437 countsByYear W25507424372017 @default.
- W2550742437 countsByYear W25507424372018 @default.
- W2550742437 countsByYear W25507424372019 @default.
- W2550742437 countsByYear W25507424372020 @default.
- W2550742437 countsByYear W25507424372021 @default.
- W2550742437 countsByYear W25507424372022 @default.
- W2550742437 countsByYear W25507424372023 @default.
- W2550742437 crossrefType "journal-article" @default.
- W2550742437 hasAuthorship W2550742437A5006605951 @default.
- W2550742437 hasAuthorship W2550742437A5032859588 @default.
- W2550742437 hasAuthorship W2550742437A5061502421 @default.
- W2550742437 hasBestOaLocation W25507424371 @default.
- W2550742437 hasConcept C105795698 @default.
- W2550742437 hasConcept C111919701 @default.
- W2550742437 hasConcept C116675565 @default.
- W2550742437 hasConcept C149782125 @default.
- W2550742437 hasConcept C158709400 @default.
- W2550742437 hasConcept C159047783 @default.
- W2550742437 hasConcept C177774035 @default.
- W2550742437 hasConcept C18903297 @default.
- W2550742437 hasConcept C205649164 @default.
- W2550742437 hasConcept C2778755073 @default.
- W2550742437 hasConcept C2908647359 @default.
- W2550742437 hasConcept C33923547 @default.
- W2550742437 hasConcept C41008148 @default.
- W2550742437 hasConcept C58640448 @default.
- W2550742437 hasConcept C71924100 @default.
- W2550742437 hasConcept C86803240 @default.
- W2550742437 hasConcept C99454951 @default.
- W2550742437 hasConceptScore W2550742437C105795698 @default.
- W2550742437 hasConceptScore W2550742437C111919701 @default.
- W2550742437 hasConceptScore W2550742437C116675565 @default.
- W2550742437 hasConceptScore W2550742437C149782125 @default.
- W2550742437 hasConceptScore W2550742437C158709400 @default.
- W2550742437 hasConceptScore W2550742437C159047783 @default.
- W2550742437 hasConceptScore W2550742437C177774035 @default.
- W2550742437 hasConceptScore W2550742437C18903297 @default.
- W2550742437 hasConceptScore W2550742437C205649164 @default.
- W2550742437 hasConceptScore W2550742437C2778755073 @default.
- W2550742437 hasConceptScore W2550742437C2908647359 @default.
- W2550742437 hasConceptScore W2550742437C33923547 @default.
- W2550742437 hasConceptScore W2550742437C41008148 @default.
- W2550742437 hasConceptScore W2550742437C58640448 @default.
- W2550742437 hasConceptScore W2550742437C71924100 @default.
- W2550742437 hasConceptScore W2550742437C86803240 @default.
- W2550742437 hasConceptScore W2550742437C99454951 @default.
- W2550742437 hasFunder F4320332161 @default.
- W2550742437 hasFunder F4320332186 @default.
- W2550742437 hasIssue "11" @default.
- W2550742437 hasLocation W25507424371 @default.
- W2550742437 hasLocation W25507424372 @default.
- W2550742437 hasLocation W25507424373 @default.
- W2550742437 hasLocation W25507424374 @default.
- W2550742437 hasLocation W25507424375 @default.
- W2550742437 hasOpenAccess W2550742437 @default.